Comparative Сharacteristics of the Structure and Functional Properties of Coatings Formed on Aluminum Alloys 2ххх and 7ххх Series by the Method of Plasma Electrolytic Oxidation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and properties of coatings formed on 2ххх and 7ххх aluminum alloys by plasma elec-trolytic oxidation (PEO) performed under the same conditions have been studied. The substrate material is shown to substantially affect the quality, structure, and properties of formed coatings. Compared to the D16 Т (4Cu, 1.4Mg wt %) alloy substrate, the V95 Т1 (6.2Zn, 2.4Mg, 1.7Cu wt %) alloy substrate favors the for-mation of coatings with a more homogeneous composition and uniform thickness, which exhibit great cohe-sive and adhesive strength and mechanical and tribological properties. The adhesive failure of PEO coatings formed on the V95 Т1 alloy occurs at a load of 63 N, which is substantially higher than the critical load (49 N) of coatings formed on the D16 T alloy. The maximum hardness of coatings formed on the V95 Т1 alloy is 25 GPa, which exceeds that of coatings formed on the D16 T alloy and is equal to 20 GPa. The wear resistance of coating in water, which is formed on the V95 Т1 alloy is 4.4 times higher compared to that of the wear-resistant coating formed on the D16 T alloy.

About the authors

N. V. Letyagin

National University of Science and Technology MISiS; Moscow Polytechnical University

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia; Moscow, 107023 Russia

A. A. Sokorev

JSC Aluminum Alloys Plant

Email: n.v.letyagin@gmail.com
Podolsk, Moscow oblast, 142155 Russia

V. N. Kokarev

JSC Aluminum Alloys Plant

Email: n.v.letyagin@gmail.com
Podolsk, Moscow oblast, 142155 Russia

A. S. Shatrov

JSC Aluminum Alloys Plant

Email: n.v.letyagin@gmail.com
Podolsk, Moscow oblast, 142155 Russia

A. G. Tsydenov

JSC Aluminum Alloys Plant

Email: n.v.letyagin@gmail.com
Podolsk, Moscow oblast, 142155 Russia

A. S. Finogeev

National University of Science and Technology MISiS; JSC Aluminum Alloys Plant

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia; Podolsk, Moscow oblast, 142155 Russia

A. F. Musin

National University of Science and Technology MISiS

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia

M. I. Petrzhik

National University of Science and Technology MISiS

Author for correspondence.
Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia

References

  1. Sabitini G., Leschini L., Martini C., William J.A., Hutchings I.M. Improving sliding and abrasive wear behavior of cast A356 and wrought AA7075 aluminum alloys by plasma electrolytic oxidation // Mater. Des. 2010. V. 31. P. 816–828.
  2. Liu C., Wang Q., Cao X., Cha L., Ye R., Ramachandran C.S. Significance of plasma electrolytic oxidation treatment on corrosion and sliding wear performances of selective laser melted AlSi10Mg alloy // Mater. Characteriz. 2021. V. 181. P. 111479.
  3. Krishna L.R., Purnima A.S., Wasekar N.P., Sundararajan G. Kinetics and properties of micro arc oxidation coatings deposited on commercial Al alloys // Metall. Mater. Trans. 2007. V. 38. P. 370–378.
  4. Muhaffel F., Baydogan M., Cimenoglu H. A study to enhance the mechanical durability of the MAO coating fabricated on the 7075 Al alloy for wear-related high temperature applications // Surface & Coatings Techn. 2021. V. 409. P. 126843.
  5. Agureev L., Savushkina S., Ashmarin A., Borisov A., Apelfeld A., Anikin K., Tkachenko N., Gerasimov M., Shcherbakov A., Ignatenko V., Bogdashkina N. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites // Metals. 2018. V. 8. P. 459.
  6. Шатров А.С., Кокарев В.Н. Высокоэффективные легкие погружные многоступенчатые электроцентробежные насосы для добычи нефти в осложненных условиях // Нефтегазовые технологии и аналитика. 2018. № 2. С. 14–22.
  7. Шатров А.С., Кокарев В.Н. Новая технология промышленного производства износостойких деталей трубопроводной арматуры из алюминиевых сплавов с защитным керамическим наноструктурным покрытием // Вестник арматурщика. 2014. № 6(19). С. 48–50.
  8. Wang P., Wu T., Xiao Y.T., Zhang L., Pu J., Cao W.J., Zhong X.M. Characterization of micro-arc oxidation coatings on aluminum drill pipes at different current density // Vacuum. 2017. V. 142. P. 21–28.
  9. Akopyan T.K., Gamin Y.V., Galkin S.P., Prosviryakov A.S., Aleshchenko A.S., Noshin M.A., Koshmin A.N., Fomin A.V. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties // Mater. Sci. Eng. A. 2020. V. 786. P. 139 424.
  10. Akopyan T.K., Belov N.A. Approaches to the design of the new high-strength casting aluminum alloys of 7xxx series with high iron content // Non-ferrous Metals. 2016. № 1. P. 20–27.
  11. Sun L., Guo Y., Chen L., Zhao G. Effects of solution and aging treatments on the microstructure and mechanical properties of cold rolled 2024 Al alloy sheet // JMR&T. 2021. V. 21. P. 1126–1142.
  12. Ракоч А.Г., Гладкова А.А., Дуб А.В. Плазменно-электролитическая обработка алюминиевых и титановых сплавов. М.: Издательский Дом “МИСиС”, 2017. 160 с.
  13. Markov M.A., Bykova A.D., Krasikov A.V., Farmakovskii B.V., Gerashchenkov D.A. Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum // Refract. Ind. Ceram. 2018. V. 59. P. 207–214.
  14. Rakoch A.G., Khabibullina Z.V., Volkova O.V., Borko A.V, Van Tuan T., Suminov I.V., Zhukov S.V. Influence of current density and duration of PET of AA2024 alloy on the rate and growth mechanisms of a coating’s wear-resistant anticorrosive inner layer // Int. J. Corros. Scale Inhib. 2021. V. 10. P. 1621–1637.
  15. Gulec A.E., Gencer Y., Tarakci M. The characterization of oxide based ceramic coating synthesized on Al–Si binary alloys by microarc oxidation // Surf. Coating. Technol. 2015. V. 269. P. 100–107.
  16. Gencer Y., Gulec A.E. The effect of Zn on the microarc oxidation coating behavior of synthetic Al–Zn binary alloys // J. Alloys Compd. 2012. V. 525. P. 159–165.
  17. Cengiz S., Tarakci M., Gencer Y., Devecili A.O., Azakli Y. Oxide based ceramic coating on Al–4Cu alloy by microarc oxidation // Acta Phys. Pol. A. 2013. V. 123. P. 445–448.
  18. Tarakci M. Plasma electrolytic oxidation coating of synthetic Al–Mg binary alloys // Mater. Char. 2011. V. 62. P. 1214–1221.
  19. Gencer Y., Tarakci M., Gulec A.E., Oter Z.C. Plasma electrolytic oxidation of binary Al-Sn alloys // Acta Phys. Pol. A. 2014. V. 125. P. 659–663.
  20. Cengiz S. Synthesis of eutectic Al–18Ce alloy and effect of cerium on the PEO coating growth // Materials Chemistry and Physics. 2020. V. 247. P. 122897.
  21. Oh Y.-J., Mun J.-I., Kim J.-H. Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis // Surface & Coatings Technology. 2009. V. 204. P. 141–148.
  22. Tillous K., Toll-Duchanoy T., Bauer-Grosse E., Hericher L., Geandier G. Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T4 // Surface & Coatings Technology. 2009. V. 203. P. 2969–2973.
  23. Venugopal A., Srinath J., Rama Krishna L., Ramesh Narayanan P., Sharma S.C., Venkitakrishnan P.V. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy // Mater. Sci. Eng., A. 2016. V. 660. P. 39-46.
  24. Arunnellaiappan T., Kishore babu N., Rama Krishna L., Ramesh Babu N. Influence of frequency and duty cycle on microstrure of plasma electrolytic oxidized AA7075 and the correlation to its corrosion behavior // Surf. Coat. Technol. 2015. V. 280. P. 136–147.
  25. Wu T., Blawerta C., Zheludkevich M.L. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process // J. Mater. Sci. & Techn. 2020. V. 50. P. 75–85.
  26. Veys-Renaux D., Rocca E. Initial stages of multi-phased aluminium alloys anodizing by MAO: micro-arc conditions and electrochemical behavior // J. Solid State Electrochem. 2015. V. 19. P. 3121–3129.
  27. Петржик М.И., Левашов Е.А. Современные методы изучения функциональных поверхностей перспективных материалов в условиях механического контакта // Кристаллография. 2007. Т. 52. № 6. С. 1002–1010.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (755KB)
4.

Download (2KB)
5.

Download (158KB)
6.

Download (60KB)

Copyright (c) 2023 Н.В. Летягин, А.А. Сокорев, В.Н. Кокарев, А.С. Шатров, А.Г. Цыденов, А.С. Финогеев, А.Ф. Мусин, М.И. Петржик

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies