The Structure and Mechanical Properties of the Aging Shape-Memory Ti49Ni51 Alloy after Thermomechanical Treatment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of thermomechanical treatment on the structure and phase transitions of the aging shape-memory Ti–51 at % Ni alloy has been studied. Mechanical tensile tests were performed in combina-tion with optical and electron microscopic and X-ray diffraction studies. An ultrafine grained (UFG) struc-ture was created in the alloy by multipass-rolling plastic deformation and further annealing. It was established for the alloy to have a high level of mechanical properties (ultimate tensile strength up to 1550 MPa at a rela-tive elongation of more than 20%) owing to a highly disperse phase of precipitation with the formation of an UFG structure due to recrystallization.

Sobre autores

N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University Named after the First President of Russia B.N. Yeltsin

Email: pushin@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Ekaterinburg, 620108 Russia

V. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University Named after the First President of Russia B.N. Yeltsin

Email: pushin@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

N. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University Named after the First President of Russia B.N. Yeltsin

Autor responsável pela correspondência
Email: pushin@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

Bibliografia

  1. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
  2. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman: London, UK. 1990.
  3. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана. Структура и свойства. М.: Наука, 1992. 161 с.
  4. Pushin V.G. Alloys with a Thermomechanical Memory: Structure, Properties, and Application // Phys. Met. Metal. 2000. V.90. Suppl.1. P. S68–S95.
  5. Brailovski V., Khmelevskaya I.Yu., Prokoshkin S.D., Pushin V.G., Ryklina E.P., Valiev R.Z. Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys // PhMM. 2004. V. 97. Suppl 1. P. S3–S55.
  6. Razov A.I. Application of titanium nickelide-based alloys in engineering // PhMM. 2004. V. 97. Suppl 1. P. S97–S126.
  7. Bonnot E., Romero R., Mañosa L., Vives E., Planes A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys // Phys. Rev. Lett. 2008. V. 100. P. 125901.
  8. Cui J. Shape memory alloys and their applications in power generation and refrigeration / In Mesoscopic phenomena in multifunctional materials. Eds. A. Saxena, A. Planes; Springer, Germany. 2014. P. 289–307.
  9. Prokoshkin S.D., Pushin V.G., Ryklina E.P., Khmelevskaya I.Yu. Application of Titanium Nickelide–based Alloys in Medicine // Phys. Met. Metallogr. 2004. V. 97. P. S56–S96.
  10. Wilson J., Weselowsky M. Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review // Earth. Spectra. 2005. V. 21. P. 569–601.
  11. Yoneyama T., Miyazaki S. Shape Memory Alloys for Medical Applications. Wordhead Publishing: Cambridge, UK. 2009.
  12. Dong J., Cai C., O’Keil A. Overview of Potential and Existing Applications of Shape Memory Alloys in Bridges // J. Bridg. Eng. 2011. V. 16. P. 305–315.
  13. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. № 12. P. 2616 (24 p.).
  14. Пушин В.Г., Волкова С.Б., Матвеева Н.М., Юрченко Л.И., Чистяков А.С. Структурные и фазовые превращения в квазибинарных сплавах системы TiNi–TiCu, быстрозакаленных из расплава. IV. Микроструктура кристаллических сплавов // ФММ. 1997. Т. 83. № 6. С. 149–156.
  15. Fu Y., Du H., Huang W., Zhang S., Hu M. TiNi-based thin films in MEMS applications: A review // Sens.Actuators A. 2004. V. 112. P. 398–408.
  16. Пушин А.В., Попов А.А., Пушин В.Г. Влияние отклонения химического состава от стехиометричского на структурные и фазовые превращения и свойства быстрозакаленных сплавов Ti50 + xNi25 – xCu25 // ФММ. 2012. Т. 113. № 3. С. 299–311.
  17. Пушин А.В., Попов А.А., Пушин В.Г. Влияние отклонения химического состава от квазибинарного разреза TiNi–TiCu на структурные и фазовые превращения в быстрозакаленных сплавах // ФММ. 2013. Т. 114. № 8. С. 753–764.
  18. Pushin V.G., Stolyarov V.V., Valiev R.Z., Kourov N.I., Kuranova N.N., Prokofiev E.A., Yurchenko L.I. Features of Structure and Phase Transformations in Shape Memory TiNi-Based Alloys after Severe Plastic Deformation // Ann. Chim. Sci. Mat. 2002. V. 27. P. 77–88.
  19. Pushin V.G., Valiev R.Z. The Nanostructured TiNi Shape-Memory Alloys: New Properties and Applications // Sol. St. Phenom. 2003. V. 94. P. 13–24.
  20. Pushin V.G. Structure, Properties, and Application of Nanostructures Shape Memory TiNi-Based Alloys / In book Nanomaterials by severe plastic deformation, Wiley-VCH Verlag GmbH &Co, Weinheim. 2004. P. 822–828.
  21. Pushin V.G., Valiev R.Z., Zhu Y.T., Gunderov D.V., Kourov N.I., Kuntsevich T.E., Uksusnikov A.N., Yurchenko L.I. Effect of Severe Plastic Deformation on the Behavior of Ti–Ni Shape Memory Alloys.// Mater. Trans. 2006. V. 47. P. 694–697.
  22. Valiev R., Gunderov D., Prokofiev E., Pushin V., Zhu Yu. Nanostructuring of TiNi alloy by SPD processing for advanced properties // Mater. Trans. 2008. V. 49. P. 97–101.
  23. Куранова Н.Н., Гундеров Д.В., Уксусников А.Н., Лукьянов А.В., Юрченко Л.И., Прокофьев Е.А., Пушин В.Г., Валиев Р.З. Влияние термообработки на структурные и фазовые превращения и механические свойства сплава TiNi, подвергнутого интенсивной пластической деформации кручением // ФММ. 2009. Т. 108. № 6. С. 589–601.
  24. Куранова Н.Н., Макаров В.В., Пушин В.Г. Влияние механо-термической обработки на структуру и механические свойства сплава Ti49.5Ni50.5 с эффектами памяти формы // ФММ. 2022. Т. 123. № 10. С. 1063–1071.
  25. Ren X., Miura N., Zhang J., Otsuka K., Tanake K., Koiwa M., Suzuki N., Chumlykov Y.I. A Comparative Study of Elastic Constants of Ti–Ni-based Alloys Prior to Martensitic Transformation // Mater. Sci. Eng. 2001. V. A312. P. 196–206.
  26. Лободюк В.А., Коваль Ю.Н., Пушин В.Г. Кристаллоструктурные особенности предпереходных явлений и термоупругих мартенситных превращений в сплавах цветных металлов // ФММ. 2011. Т. 111. № 2. С. 169–194.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (3MB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (1MB)
7.

Baixar (1MB)
8.

Baixar (1MB)
9.

Baixar (74KB)
10.

Baixar (51KB)
11.

Baixar (1MB)

Declaração de direitos autorais © Н.Н. Куранова, В.В. Макаров, В.Г. Пушин, Н.А. Попов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies