The Microstructural and Phase Evolution of the 3D Printed Ti–6Al–4V Alloy during Mechanical Loading

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the results of an in situ study on the evolution of the microstructure and phase composition of 3D-printed Ti–6Al–4V samples under tension in the transmission electron microscope col-umn. The microstructure of Ti–6Al–4V specimens manufactured by wire-feed electron beam additive tech-nology is shown to consist of columnar primary β-grains inside of which are α/α'-Ti laths separated by layers of the residual β-phase and gathered into packets. A characteristic feature of 3D-printed Ti–6Al–4V samples is the concentration nonuniformity of the alloying elements due to the partial decomposition of the marten-sitic α'-phase. The reorientation of the α/α'-Ti lattice near interfaces takes place during uniaxial tension. Deformation-induced α'→α" transformations can develop in the reoriented regions of the α/α'-Ti lattice, in places enriched in vanadium.

About the authors

A. V. Panin

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; National Research Polytechnic University

Email: pav@ispms.ru
Tomsk, 634055 Russia; Tomsk, 634050 Russia

M. S. Kazachenok

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: pav@ispms.ru
Tomsk, 634055 Russia

L. A. Kazantseva

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; Tomsk State University of Architecture and Building

Email: pav@ispms.ru
Tomsk, 634055 Russia; Tomsk, 634003 Russia

O. B. Perevalova

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: pav@ispms.ru
Tomsk, 634055 Russia

S. A. Martynov

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: pav@ispms.ru
Tomsk, 634055 Russia

References

  1. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing // Int. Mater. Rev. 2016. V. 61. P. 315–360.
  2. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals // Acta Mater. 2016. V. 117. P. 371–392.
  3. Murr L.E., Quinones S.A., Gaytan S.M., Lopez M.I., Rodela A., Martinez E.Y., Hernandez D.H., Martinez E., Medina F., Wicker R.B. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications // J. Mech. Behav. Biomed. Mater. 2009. V. 2. P. 20–32.
  4. Казанцева Н.В., Крахмалев П.В., Ядройцева И.А., Ядройцев И.А. Лазерная аддитивная 3D-печать титановых сплавов: современное состояние, проблемы, тенденции // ФММ. 2021. Т. 122. № 1. С. 8–30.
  5. Jaber H., Kónya J., Kulcsár K., Kovács T. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting // Materials. 2022. V. 15. P. 1978.
  6. Niessen F., Pereloma E. A Review of In Situ Observations of Deformation-Induced β ↔ α" Martensite Transformations in Metastable β Ti Alloys // Adv. Eng. Mater. 2022. V. 24. P. 2200281.
  7. Duerig T.W., Albrecht J., Richter D., Fischer P. Formation and reversion of stress induced martensite in Ti–IOV–2Fe–3AI // Acta Metall. 1982. V. 30. P. 2161–2172.
  8. Yao T., Du K., Hao Y., Li S., Yang R., Ye H. In-situ observation of deformation-induced αʹʹ phase transformation in a β-titanium alloy // Mater. Lett. 2016. V. 182. P. 281–284.
  9. Chen W., Yang Sh., Lin Y.C., Shi S., Chen C., Zhang X., Zhoul K. Cyclic deformation responses in α-phase of a lamellar near β-Ti alloy // Mater. Sci. Eng. A. 2020. V. 796. P. 139994.
  10. Панин А.В., Казаченок М.С., Перевалова О.Б., Синякова Е.А., Круковский К.В., Мартынов С.А. Многоуровневые механизмы деформационного поведения технического титана и сплава Ti–6Al–4V, подвергнутых обработке высокочастотными электронными пучками // Физ. мезомех. 2018. Т. 21. № 4. С. 45–56.
  11. Sinyakova E.A., Panin A.V., Perevalova O.B., Shugurov A.R., Kalashnikov M.P., Teresov A.D. The effect of phase transformations on the elastic recovery of pulsed electron beam irradiated Ti–6Al–4V titanium alloy during scratching // J. Alloys Compd. 2019. V. 795. P. 275–283.
  12. Panin A., Dmitriev A., Nikonov A., Perevalova O., Kazantseva Bakulin L., A., Kulkova S. Transformations of the microstructure and phase compositions of titanium alloys during ultrasonic impact treatment. Part II: Ti–6Al–4V Titanium Alloy // Metals. 2022. V. 12. P. 732.
  13. Sofinowski K., Šmíd M., Kuběna I., Vivès S., Casati N., Godet S., Van Swygenhoven H. In situ characterization of a high work hardening Ti–6Al–4V prepared by electron beam melting // J. Mater. Sci. 2019. V. 179. P. 224–236.
  14. Shugurov A., Panin A., Kazachenok M., Kazantseva L., Martynov S., Bakulin A., Kulkova S. Deformation behavior of wrought and EBAM Ti–6Al–4V under scratch testing // Metals. 2021. V. 11. P. 1882.
  15. Cabibbo M., Zherebtsov S., Mironov S., Salishchev G. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti–6Al–4V alloy compressed at 800°C // J. Mater. Sci. 2003. V. 48. P. 1100–1110.
  16. Грабский М.В. Структура границ зерен в металлах. Москва, Металлургия, 1972. 160 с.
  17. Панин А.В., Казаченок М.С., Казанцева Л.А., Мартынов С.А., Панина А.А., Лобова Т.А. Микроструктура и фазовый состав титановых сплавов ВТ1-0, ВТ6 и ВТ14, полученных методом электронно-лучевой проволочной аддитивной технологии // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. Т. 11. С. 63–72.
  18. Motyka M. Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys – An Overview // Metals. 2021. V. 11. P. 481.
  19. Wu S.Q., Lu Y.J., Gan Y.L., Huang T.T., Zhao C.Q., Lin J.J., Guo S., Lin J.X. Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments // J. Alloys Compd. 2016. V. 672. P. 643–652.
  20. Pushilina N., Panin A., Syrtanov M., Kashkarov E., Kudiiarov V., Perevalova O., Laptev R., Lider A., Koptyug A. Hydrogen-induced phase transformation and microstructure evolution for Ti–6Al–4V parts produced by electron beam melting // Metals. 2018. V. 8. P. 301.
  21. Panin A., Martynov S., Kazachenok M., Kazantseva L., Bakulin A., Kulkova S., Perevalova O., Sklyarova E. Effects of Water Cooling on the Microstructure of Electron Beam Additive-Manufactured Ti–6Al–4V // Metals. 2021. V. 11. P. 1742.
  22. Панин В.Е., Панин А.В., Перевалова О.Б., Шулепов И.А., Власов И.В. Влияние кривизны кристаллической решетки на иерархию масштабов деформационных дефектов и характер пластического течения металлических материалов // Физ. мезомех. 2020. Т. 23. № 4. P. 5–12.
  23. Добромыслов А.В., Талуц Н.И. Структура циркония и его сплавов // УрО РАН, Екатеринбург. 1997. 228 с.
  24. Zeng L., Bieler T.R. Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α', α" and β phases in Ti–6Al–4V wire // Mater. Sci. Eng. A. 2005. V. 392. P. 403–414.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (887KB)
4.

Download (2MB)
5.

Download (2MB)
6.

Download (905KB)
7.

Download (865KB)

Copyright (c) 2023 А.В. Панин, М.С. Казаченок, Л.А. Казанцева, О.Б. Перевалова, С.А. Мартынов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies