The Chiral Spin-Orbitronics of a Helimagnet–Normal Metal Heterojunction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theory of spin and charge transport in bounded metallic magnets has been constructed, which takes into account the effects of spin-orbit scattering of conduction electrons by crystal lattice defects. The theory can be used to describe the spin Hall effect and the anomalous Hall effect and can serve as a basis for describing the phenomena of spin-orbitronics. Phenomenological boundary conditions for the charge and spin fluxes at the interface between two different metals have been formulated, on the basis of which the injec-tion of a pure spin current into a helimagnet, which arises in a normal metal as a manifestation of the spin Hall effect, is described. The existence of an “effect of chiral polarization of a pure spin current” is predicted, which consists in the appearance in a helimagnet of a longitudinally polarized pure spin current and a longi-tudinal component of the nonequilibrium electron magnetization, depending on the chirality of the helimag-net helix, upon injection of a transversely polarized spin current from a normal metal.

About the authors

V. V. Ustinov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Natural Sciences and Mathematics, Ural Federal University

Email: ustinov@imp.uran.ru
Ekaterinburg, 620108 Russia; Ekaterinburg, 620002 Russia

I. A. Yasyulevich

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: ustinov@imp.uran.ru
Ekaterinburg, 620108 Russia

N. G. Bebenin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ustinov@imp.uran.ru
Ekaterinburg, 620108 Russia

References

  1. Stashkevich A.А. Spin-orbitronics a novel trend in spin oriented electronics // Изв. вузов России. Радиоэлектроника. 2019. Т. 22. С. 45–54.
  2. Manchon A., Zelzny J., Miron I. M., Jungwirth T., Sinova J., Thiaville A., Garello K., Gambardella P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems // Rev. Mod. Phys. 2019. V. 91. P. 035 004.
  3. Cao Y., Xing G., Lin H., Zhang N., Zheng H., Wang K. Prospect of spin-orbitronic devices and their applications // iScience. 2020. V. 23. P. 101614.
  4. Ando K. Generation and manipulation of current-induced spin-orbit torques // Proc. Jpn. Acad., Ser. B. 2021. V. 97. P. 499–519.
  5. Go D., Jo D., Lee H.-W., Kläui M., Mokrousov Y. Orbitronics: Orbital currents in solids // Europhys. Lett. 2021. V. 135. P. 37001.
  6. Дьяконов М.И., Перель В.И. О возможности ориентации электронных спинов током // Письма в ЖЭТФ. 1971. Т. 13. С. 657–660.
  7. Dyakonov M.I., Perel V.I. Current-induced spin orientation of electrons in semiconductors // Phys. Lett. A. 1971. V. 35. P. 459–460.
  8. Hirsch J.E. Spin Hall effect // Phys. Rev. Lett. 1999. V. 83. P. 1834–1837.
  9. Zhang S. Spin Hall effect in the presence of spin diffusion // Phys. Rev. Lett. 2000. V. 85. P. 393–396.
  10. Hoffmann A. Spin Hall effects in metals // IEEE Trans. Magn. 2013. V. 49. P. 5172– 5193.
  11. Niimi Y., Otani Y. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: A review // Rep. Prog. Phys. 2015. V. 78. P. 124501.
  12. Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. Spin Hall Effects // Rev. Mod. Phys. 2015. V. 87. P. 1213–1259.
  13. Dyakonov M.I. (ed.) Spin Physics in Semiconductors. Springer Series in Solid-State Sciences. 2017. V. 157. 532 p.
  14. Kato Y.K., Myers R.C., Gossard A.C., Awschalom D.D. Observation of the spin Hall effect in semiconductors // Science. 2004. V. 306. P. 1910–1913.
  15. Valenzuela S.O., Tinkham M. Direct electronic measurement of the spin Hall effect // Nature (London). 2006. V. 442. P. 176–179.
  16. Kimura T., Otani Y., Sato T., Takahashi S., Maekawa S. Room-temperature reversible spin Hall effect // Phys. Rev. Lett. 2007. V. 98. P. 156601.
  17. Ramaswamy R., Lee J.M., Cai K., Yang H. Recent advances in spin-orbit torques: Moving towards device applications // Appl. Phys. Rev. 2018. V. 5. P. 031107.
  18. Pham V.T., Cosset-Chéneau M., Brenac A., Boulle O., Marty A., Attané J.-P., Vila L. Evidence of interfacial asymmetric spin scattering at ferromagnet-Pt interfaces // Phys. Rev. B. 2021. V. 103. P. L201403.
  19. Zhang W., Jungfleisch M.B., Jiang W., Pearson J.E., Hoffmann A., Freimuth F., Mokrousov Y. Spin Hall effects in metallic antiferromagnets // Phys. Rev. Lett. 2014. V. 113. P. 196602.
  20. Yang Y., Xu Y., Zhang X., Wang Y., Zhang S., Li R.-W., Mireshekarloo M.S., Yao K., Wu Y., Fieldlike spin-orbit torque in ultrathin polycrystalline FeMn films // Phys. Rev. B. 2016. V. 93. P. 094402.
  21. Wadley P., Howells B., Zelezný J., Andrews C., Hills V., Campion R.P., Novák V., Olejník K., Maccherozzi F., Dhesi S.S., Martin S.Y., Wagner T., Wunderlich J., Freimuth F., Mokrousov Y., Kunes J., Chauhan J.S., Grzybowski M.J., Rushforth A.W., Edmonds K.W., Gallagher B.L., Jungwirth T. Electrical switching of an antiferromagnet // Science. 2016. V. 351. P. 587.
  22. DuttaGupta S., Kurenkov A., Tretiakov O.A., Krishnaswamy G., Sala G., Krizakova V., Maccherozzi F., Dhesi S.S., Gambardella P., Fukami S., Ohno H. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure // Nat. Commun. 2020. V. 11. P. 5715.
  23. Mishra R., Yu J., Qiu X., Motapothula M., Venkatesan T., Yang H. Anomalous current-induced spin torques in ferrimagnets near compensation // Phys. Rev. Lett. 2017. V. 118. P. 167201.
  24. Takeuchi Y., Yamane Y., Yoon J.-Y., Itoh R., Jinnai B., Kanai S., Ieda J., Fukami S., Ohno H. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque // Nat. Mater. 2021. V. 20. P. 1364–1370.
  25. Aqeel A., Vlietstra N., Heuver J.A., Bauer G.E.W., Noheda B., van Wees B.J., Palstra T.T.M. Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 // Phys. Rev. B. 2015. V. 92. P. 224410.
  26. Aqeel A., Vlietstra N., Roy A., Mostovoy M., van Wees B.J., Palstra T.T.M. Electrical detection of spiral spin structures in Pt|Cu2OSeO3 heterostructures // Phys. Rev. B. 2016. V. 94. P. 134418.
  27. Aqeel A., Mostovoy M., van Wees B.J., Palstra T.T.M. Spin-Hall magnetoresistance in multidomain helical spiral systems // J. Phy. D: Appl. Phys. 2017. V. 50. P. 174 006.
  28. Устинов В.В., Ясюлевич И.А. Электронный спиновый ток и спин-зависимые гальваномагнитные явления в металлах // ФММ. 2020. Т. 121. С. 257–269.
  29. Вонсовский С.В. Магнетизм // М.: Наука, 1971. 1032 с.
  30. Ustinov V.V., Yasyulevich I.A. Electrical magnetochiral effect and kinetic magnetoelectric effect induced by chiral exchange field in helical magnetics // Phys. Rev. B. 2020. V. 102. P. 134 431.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».