The Effect of Atomic Interdiffusion at the Al/Сu Interface in an Al/Сu Composite on Its Mechanical Properties: Molecular Dynamics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Composites with an aluminum matrix are relevant materials for research, since they are superior to conventional materials in their mechanical characteristics and can be used in various industries. In this work, the method of molecular dynamics is used to study the interdiffusion at an Al/Cu mixing interface
under compression combined with the shear deformation. Molecular dynamics tensile tests of the obtained
composite have been performed after combined compression to different strains. The deformation scheme
used in this work is a simplified scenario that was previously experimentally performed to obtain Al/Cu composites.
It has been shown that compression combined with the shear deformation is an effective way to obtain
a composite structure. It has been found that under deformation Cu atoms more easily diffuse into an Al block
than Al atoms diffuse into a Cu block. Tensile tests performed after the combined compression show that fracturing
occurs in the aluminum part of the composite; therefore, the Al/Cu mixing interface is stronger than
the pure aluminum part.

Авторлар туралы

P. Polyakova

Russia Institute for Metals Superplasticity Problems, Russian Academy of Sciences

Email: polina.polyakowa@yandex.ru
Ufa, 450001 Russia

Yu. Baimova

Russia Institute for Metals Superplasticity Problems, Russian Academy of Sciences; Ufa University of Science and Technologies

Хат алмасуға жауапты Автор.
Email: polina.polyakowa@yandex.ru
Ufa, 450001 Russia; Ufa, 450067 Russia

Әдебиет тізімі

  1. Oliveira N.A., von Ranke P.J. Theoretical aspects of the magnetocaloric effect // Phys. Rep. 2010. V. 489. P. 89–153.
  2. Zhang J., Song B., Wei Q., Bourell D., Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends // J. Mater. Sci. Technol. 2019. V. 35. P. 270–284.
  3. Imran M., Khan A.R.A. Characterization of Al-7075 metal matrix composites: a review // J. Mater. Res. Technol. 2019. V. 8. P. 3347–3356.
  4. Xu T., Yang Y., Peng X., Song J., Pan F. Overview of advancement and development trend on magnesium alloy // J. Magn. All. 2019. V. 7. P. 536–544.
  5. Hirsch J., Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications // Acta Mater. 2013. V. 61(3). P. 818–843.
  6. Lacaze J., Tierce S., Lafont M.-C., Thebault Y., P’eb`ere N., Mankowski G., Blanc C., Robidou H., Vaumousse D., Daloz D. Study of the microstructure resulting from brazed aluminium materials used in heat exchangers // Mater. Sci. Eng.: A. 2005. V. 413–414. P. 317–321.
  7. Kala H., Mer K.K.S., Kumar S. A review on mechanical and tribological behaviors of stir cast aluminum matrix composites // Procedia Mater. Sci. 2014. V. 6. P. 1951–1960.
  8. Mai T.A., Spowage A.C. Characterisation of dissimilar joints in laser welding of steel-kovar, copper–steel and copper–aluminium // Mater. Sci. Eng. A. 2004. V. 374. P. 224–233.
  9. Mishra R.S., Mahoney M.W., McFadden S.X., Mara N.A., Mukherjee A.K. High strain rate superplasticity in a friction stir processed 7075 Al alloy // Scr. Mater. 1999. V. 42. P. 163–168.
  10. Wei X.Z., Zhou Q., Xu K.W., Huang P., Wang F., Lu T.J. Enhanced hardness via interface alloying in nanoscale Cu/Al multilayers // Mater. Sci. Eng.: A. 2018. V. 726. P. 274–281.
  11. Fronczek D.M., Chulist R., Litynska-Dobrzynska L., Kac S., Schell N., Kania Z., Szulc Z., Wojewoda-Budka J. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing // Mater. Design. 2017. V. 130. P. 120–130.
  12. Rahmatabadi D., Tayyebi M., Hashemi R., Faraji G. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB process // Int. J. Miner. Metall. Mater. 2018. V. 25. P. 564–572.
  13. Shayanpoor A.A., Ashtiani H.R.R. Microstructural and mechanical investigations of powder reinforced interface layer of hot extruded Al/Cu bimetallic composite rods // J. Manuf. Process. 2022. V. 77. P. 313–328.
  14. Shakouri S., Eghbali B. Characterization of Microstructure and Mechanical Properties of Multilayer Al/Cu/Mg/Ni Composite Produced through Accumulative Roll Bonding // Phys. Metals Metallogr. 2019. V. 120. P. 796–805.
  15. Volkov A.Y., Kalonov A.A., Komkova D.A., Glukhov A.V. Structure and Properties of Cu/Mg Composites Produced by Hydrostatic Extrusion // Phys. Met. Metal. 2018. V. 119. P. 946–955.
  16. Brodova I.G., Volkov A.Y., Shirinkina I.G., Kalonov A.A., Yablonskikh T.I., Astaf’ev V.V., Elokhina L.V. Evolution of the Structure and Properties of Al/Cu/Mg Ternary Composites during Thermomechanical Treatment // Phys. Met. Metal. 2018. V.119. P.1210–1216.
  17. Grigoreva T.F., Petrova S.A., Kovaleva S.A., Dudina D.V., Batraev I.S., Kiseleva T.Yu., Zholudev S.I., Vosmerikov S.V., Devyatkina E.T., Udalova T.A., Polyakov S.N., Lyakhov N.Z. Mechanochemical Synthesis of Cu–Al Alloyed Powders and Their Consolidation by Spark Plasma Sintering // Phys. Met. Metal. 2021. V. 122. P. 681–687.
  18. Rodak K., Rzychoń T., Mikuszewski T., Chmiela B., Sozańska M., Boczkal S. Ultrafine-grained microstructures of Al–Cu alloys with hypoeutectic and hypereutectic composition produced by extrusion combined with reversible torsion // Microsc. Microanal. 2022. V. 28. P. 953–960.
  19. Mulyukov R.R., Korznikova G.F., Nazarov K.S., Khisamov R.K., Sergeev S.N., Shayachmetov R.U., Khalikova G.R., Korznikova E.A. Annealing-induced phase transformations and hardness evolution in Al–Cu–Al composites obtained by high-pressure torsion // Acta Mech. 2021. V.232. P. 1815–1828.
  20. Korznikova G., Korznikova E., Nazarov K., Shayakhmetov R., Khisamov R., Khalikova G., Mulyukov R. Structure and mechanical behavior of Al–Nb hybrids obtained by high-pressure-torsion-induced diffusion bonding and subsequent annealing // Adv. Eng. Mater. 2020. V. 23. P. 2000757.
  21. Korznikova G., Kabirov R., Nazarov K., Khisamov R., Shayakhmetov R., Korznikova E., Khalikova G., Mulyukov R. Influence of constrained high-pressure torsion on microstructure and mechanical properties of an aluminum-based metal matrix composite // JOM. 2020. V. 72. P. 2898–2911.
  22. Korznikova G.F., Nazarov K.S., Khisamov R.K., Sergeev S.N., Shayachmetov R.U., Khalikova G.R., Baimova J.A., Glezer A.M., Mulyukov R.R. Intermetallic growth kinetics and microstructure evolution in Al–Cu–Al metal-matrix composite processed by high pressure torsion // Mater. Lett. 2019. V. 253. P. 412–415.
  23. Korznikova G., Korznikova E., Khalikova G., Nazarov K., Khisamov R., Sergeev S., Shayakhmetov R., Mulyukov R. Al based layered in situ metal-matrix composites fabricated by constrained high pressure torsion // Lett. Mater. 2021. V. 11. P. 533–543.
  24. Rogachev S.O., Khatkevich V.M., Sundeev R.V. High strength in layered metal composites obtained by high-pressure torsion // Mater. Lett. 2021. V. 303. P. 130567.
  25. Han J.-K., Han D.K., Liang G.Y., Jang J.-I., Langdon T.G., Kawasaki M. Direct bonding of aluminum–copper metals through high-pressure torsion processing // Adv. Eng. Mat. 2018. V. 20. P. 1800642.
  26. Kulagin R., Beygelzimer Y., Ivanisenko Y., Mazilkin A., Straumal B., Hahn H. Instabilities of interfaces between dissimilar metals induced by high pressure torsion // Mater. Lett. 2018. V. 222. P. 172–175.
  27. Kawasaki M., Han J.-K., Lee D.-H., Jang J.-I., Langdon T.G. Fabrication of nanocomposites through diffusion bonding under high-pressure torsion // J. Mater. Res. 2018. V. 33. P. 2700–2710.
  28. Kawasaki M., Jang J.-I. Micro-mechanical response of an Al–Mg hybrid system synthesized by high-pressure torsion // Materials. 2017. V. 10. P. 596.
  29. Cao M., Wang C.-J., Deng K.-K., Nie K.-B., Liang W., Wu Y.-C. Effect of interface on mechanical properties and formability of Ti/Al/Ti laminated composites // J. Mater. Res. Technol. 2021. V. 14. P. 1655–1669.
  30. Bartkowska A., Bazarnik P., Huang Y., Lewandowska M., Langdon T.G. Using high-pressure torsion to fabricate an Al–Ti hybrid system with exceptional mechanical properties // Mater. Sci. Eng.: A. 2021. V. 799. P. 140 114.
  31. Bazarnik P., Bartkowska A., Huang Y., Szlkazak K., Adamczyk-Cieslak B., Sort J., Lewandowska M., Langdon T.G. Fabrication of hybrid nanocrystalline Al–Ti alloys by mechanical bonding through high-pressure torsion // Mater. Sci. Eng.: A. 2022. V. 833. P. 142549.
  32. Nazarov A.A., Mulyukov R.R. Handbook of Nanoscience, Engineering, and Technology // CRC Press, Boca Raton. 2002. P. 22–1–22–41.
  33. Karkina L.E., Karkin I.N., Gornostyrev Y.N. Grain Boundary Sliding along Special Asymmetric Grain Boundaries in the Al Bicrystals: Atomistic Molecular Dynamics Simulation. // Phys. Metals Metallogr. 2021. V. 122. P. 1103–1111.
  34. Karkin I.N., Karkina L.E., Gornostyrev Y.N., Korzhavyi A.P. Kinetics of Early Decomposition Stages in Diluted BCC Fe–Cu–Ni–Al Alloy: MC + MD Simulation. // Phys. Solid State. 2019. V. 61. P. 601–608.
  35. Karkina L.E., Karkin I.N., Kuznetsov A.R., Razumov I.K., Korzhavyi P.A., Gornostyrev Yu.N. Solute–grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling. // Comput. Mater. Sci. 2016. V. 112. P. 18–26.
  36. Ding S., Wang X. Strain rate and temperature effects on the mechanical properties of TiN/VN composite: Molecular dynamics study // J. Alloys Compd. 2020. V. 814. P. 152151.
  37. Su M., Deng Q., An M., Liu L., Chen L. Role of amorphous layer and interfaces on the tensile behaviors of triple-phase Ti/Ni nanolaminates: A molecular dynamic study // J. Alloys Compd. 2021. V. 868. P. 159 282.
  38. Han X., Liu P., Sun D., Wang Q. Molecular dynamics simulations of the tensile responses and fracture mechanisms of Ti2AlN/TiAl composite // Theor. Appl. Fract. Mech. 2019. V. 101. P. 217–223.
  39. Polyakova P.V., Baimova J.A. Molecular dynamics simulation of diffusion in Mg-Al system under pressure // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1008. P. 012 052.
  40. Polyakova P.V., Shcherbinin S.A., Baimova, J.A. Molecular dynamics investigation of atomic mixing and mechanical properties of Al/Ti interface // Lett. Mater. 2021. V. 11. P. 561–565.
  41. Polyakova P.V., Pukhacheva J.A., Shcherbinin S.A., Baimova J.A., Mulyukov R.R. Fabrication of magnesium-aluminum composites under high-pressure torsion: Atomistic simulation //Appl. Sci. 2021. V. 11. P. 6801.
  42. Poletaev G.M., Rakitin R.Y. Influence of Ni–Al interphase boundary orientation on the interdiffusion rate at temperatures above aluminum melting point: a molecular dynamics study // Mater. Phys. Mech. 2022. V. 48. P. 452–458.
  43. Poletaev G.M., Bebikhov Y.V., Semenov A.S., Starostenkov M.D. Self-diffusion in melts of Ni–Al and Ti–Al systems: molecular dynamics study // Lett. Mater. V. 11. P. 438–441.
  44. Cai J., Ye Y.Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys // Phys. Rev. B. 1996. V. 54. P. 8398–8410.
  45. Karkin I.N., Karkina L.E., Korzhavyi P.A., Gornostyrev Yu.N. Monte Carlo simulation of the kinetics of decomposition and the formation of precipitates at grain boundaries of the general type in dilute BCC Fe–Cu alloys // Phys. Solid State. 2017. V. 59. P. 106–113.
  46. Karkin I.N., Karkina L.E., Kuznetsov A.R., Petrik M.V., Gornostyrev Yu.N., Korzhavyi P.A. Segregation of Mg to generic tilt grain boundaries in Al: Monte Carlo modeling // Mater. Phys. Mech. 2015. V. 24. P. 201–210.
  47. Shmakov I.G., Razumov I.K., Gorbatov O.I., Gornostyrev Yu.N., Korzhavyi P.A. Decomposition kinetics in Fe–Cu dilute alloys. Monte Carlo simulation using concentration-dependent interactions // JETP Letters. 2016. V. 103. P. 112–116.
  48. Luo S.Y., Li J.H., Cui Y.Y., Dai Y., Liu B.X. Monte Carlo simulations to study the forming ability and atomic configuration of the Cu–Al amorphous alloys // Intermetallics. 2012. V. 25. P. 109–114.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (659KB)
3.

Жүктеу (1MB)
4.

Жүктеу (185KB)
5.

Жүктеу (85KB)

© П.В. Полякова, Ю.А. Баимова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>