Частицы вторичных фаз в сплавах Zr–Sn–Nb–Fe. Обзор

Обложка
  • Авторы: Алдин А.В.1,2, Чэнь Ч.В.1, Дишер И.А.3, Самиуддин М.1,4, Янь К.1
  • Учреждения:
    1. Ведущая государственная лаборатория по обработке затвердеванием, Северо-западный политехнический университет
    2. Факультет материаловедения, Инженерный колледж, Университет Куфы
    3. Факультет керамики и строительных материалов, Материаловедческий колледж, Вавилонский университет
    4. Металлургический факультет, Инженерно-технологический университет NED
  • Выпуск: Том 124, № 4 (2023)
  • Страницы: 382-399
  • Раздел: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
  • URL: https://journals.rcsi.science/0015-3230/article/view/139405
  • DOI: https://doi.org/10.31857/S0015323023600223
  • EDN: https://elibrary.ru/VIVGEW
  • ID: 139405

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В четверных сплавах системы Zr–Sn–Nb–Fe природа и эволюция частиц вторичных фаз (SPPs) имеет решающее значение при использовании сплава в агрессивной среде. Целью данного обзора является обобщение важнейших результатов по идентификации и определению характеристик SPPs в сплавах системы Zr–Sn–Nb–Fe. Особое внимание уделяется составу, кристаллографической структуре, механизму образования, а также термодинамическому состоянию и стабильности отдельных SPPs в этих сплавах. Интерметаллические тройные фазы в сплаве Zr–Nb–Fe были идентифицированы как структуры C14 ГПУ Zr(Nb, Fe)2 или C15 ГЦК (Zr, Nb)2Fe. Наиболее изученной является фаза Zr(Nb, Fe)2, при этом легко распознается кубическая фаза (Zr, Nb)2Fe. Обсуждается обоснованность использования параметра R*, физически соответствующего отношению Nb/Fe, при определении типов SPPs в различном диапазоне составов сплавов системы Zr–Sn–Nb–Fe. Также выяснено влияние O и Cr на образование и стабильность тройных интерметаллических фаз Zr–Nb–Fe. И, наконец, обсуждается термодинамическая стабильность SPPs.

Об авторах

А. В. Алдин

Ведущая государственная лаборатория по обработке затвердеванием,
Северо-западный политехнический университет; Факультет материаловедения, Инженерный колледж, Университет Куфы

Email: chzw@nwpu.edu.cn
Китай, 710072, провинция Шэньси, Сиань; Ирак, Наджаф

Чж. В. Чэнь

Ведущая государственная лаборатория по обработке затвердеванием,
Северо-западный политехнический университет

Email: chzw@nwpu.edu.cn
Китай, 710072, провинция Шэньси, Сиань

И. А. Дишер

Факультет керамики и строительных материалов, Материаловедческий колледж,
Вавилонский университет

Email: chzw@nwpu.edu.cn
Ирак, Вавилон

М. Самиуддин

Ведущая государственная лаборатория по обработке затвердеванием,
Северо-западный политехнический университет; Металлургический факультет, Инженерно-технологический университет NED

Email: chzw@nwpu.edu.cn
Китай, 710072, провинция Шэньси, Сиань; Пакистан, 75850, Карачи

К. Янь

Ведущая государственная лаборатория по обработке затвердеванием,
Северо-западный политехнический университет

Автор, ответственный за переписку.
Email: chzw@nwpu.edu.cn
Китай, 710072, провинция Шэньси, Сиань

Список литературы

  1. Shebaldov P.V., Peregud M.M., Nikulina A.V., Bibilashvili Y.K., Lositski A.F., Kuz’menko N.V., Belov V.I., Novoselov A.E. E110 alloy cladding tube properties and their interrelation with alloy structure-phase condition and impurity content / in: Zircon. Nucl. Ind. Twelfth Int. Symp., ASTM International, 2000.
  2. Nikulina A.V., Markelov V.A., Peregud M.M., Bibilashvili Y.K., Kotrekhov V.A., Lositsky A.F., Kuzmenko N.V., Shevnin Y.P., Shamardin V.K., Kobylyansky G.P. Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores / in: Zircon. Nucl. Ind. Elev. Int. Symp., ASTM International, 1996.
  3. Mardon J.-P., Charquet D., Senevat J. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy / in: Zircon. Nucl. Ind. Twelfth Int. Symp., ASTM International, 2000.
  4. Sabol G.P. ZIRLOTM – an alloy development success// J. ASTM. 2005. V. 2. P. JAI12942.
  5. Li Z., Liu J., Zhu M., Song Q. The effects of alloying elements on the properties of the new zirconium alloys// Xiyou Jinshu Cailiao Yu Gongcheng // Rare Met. Mater. Eng. 1996. V. 25. P. 43–48.
  6. Mei-sheng Z.H.U., Jian-zhang L.I.U., Zhong-kui L.I., Qi-zhong S. Study on structure and corrosion resistance of 8# new zirconium alloy// Rare Met. Mater. Eng. 1996. V. 25. P. 36–40.
  7. Garzarolli F., Ruhmann H., Van Swam L. Alternative Zr alloys with irradiation resistant precipitates for high burnup BWR application// ASTM Spec. Tech. Publ. 2002. V. 1423. P. 119–131.
  8. Goll W., Ray I. The Behavior of Intermetallic Precipitates in Highly Irradiated BWR LTP-cladding// ASTM Spec. Tech. Publ. 2002. V. 1423. P. 80–95.
  9. Rudling P., Wikmark G., Lehtinen B., Pettersson H. Impact of second phase particles on BWR Zr-2 corrosion and hydriding performance/ in: Zircon. Nucl. Ind. Twelfth Int. Symp., ASTM International, 2000.
  10. Kruger R.M., Adamson R.B., Brenner S.S. Effects of microchemistry and precipitate size on nodular corrosion resistance of Zircaloy-2// J. Nucl. Mater. 1992. V. 189. P. 193–200.
  11. Zhou B. The problems of nodular corrosion in zircaloy // Chinese J. Nucl. Sci. Eng. 1993. V. 13. P. 51–58.
  12. Kim H.G., Park S.Y., Lee M.H., Jeong Y.H., Kim S.D. Corrosion and microstructural characteristics of Zr–Nb alloys with different Nb contents // J. Nucl. Mater. 2008. V. 373. P. 429–432.
  13. Kulkarni R.V., Krishna K.V.M., Neogy S., Srivastava D., Ramadasan E., Shriwastaw R.S., Rath B.N., Saibaba N., Jha S.K., Dey G.K. Mechanical properties of Zr–2.5% Nb pressure tube material subjected to heat treatments in α + β phase field // J. Nucl. Mater. 2014. V. 451. P. 300–312.
  14. Valizadeh S., Ledergerber G., Abolhassani S., Jädernäs D., Dahlbäck M., Mader E.V., Zhou G., Wright J., Hallstadius L. Effects of secondary phase particle dissolution on the in-reactor performance of BWR cladding / in: Zircon. Nucl. Ind. 16th Int. Symp., ASTM International, 2012.
  15. Kim H.-G., Park J.-Y., Jeong Y.-H. Ex-reactor corrosion and oxide characteristics of Zr–Nb–Fe alloys with the Nb/Fe ratio // J. Nucl. Mater. 2005. V. 345. P. 1–10.
  16. Garzarolli F., Schumann R., Steinberg E. Corrosion optimized Zircaloy for boiling water reactor (BWR) fuel elements / in: Zircon. Nucl. Ind. Tenth Int. Symp., ASTM International, 1994.
  17. Hu J., Setiadinata B., Aarholt T., Garner A., Vilalta-Clemente A., Partezana J., Frankel P., Bagot P.A.J., Lozano-Perez S., Wilkinson A.J. Understanding corrosion and hydrogen pickup of Zr nuclear fuel cladding alloys-the role of oxide microstructure, porosity, suboxide and SPPs / in: 18th Int. Symp. Zircon. Nucl. Ind., ASTM International, 2016.
  18. Chen L., Zeng Q., Li J., Lu J., Zhang Y., Zhang L.-C., Qin X., Lu W., Zhang L., Wang L. Effect of microstructure on corrosion behavior of a Zr–Sn–Nb–Fe–Cu–O alloy // Mater. Des. 2016. V. 92. P. 888–896.
  19. Hu J., Setiadinata B., Aarholt T., Bagot P.A.J., Moody M.P., Lozano-Perez S., Grovenor C., Garner A., Harte A., Moore K. High resolution characterisation of corrosion and hydrogen pickup of Zr cladding alloys/ in: Proc. TopFuel Conf. 2015.
  20. Barberis P., Charquet D., Rebeyrolle V. Ternary Zr–Nb–Fe(O) system: Phase diagram at 853 K and corrosion behaviour in the domain Nb < 0.8% // J. Nucl. Mater. 2004. V. 326. P. 163–174. https://doi.org/10.1016/j.jnucmat.2004.01.007
  21. Comstock R.J., Schoenberger G., Sabol G.P. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding / in: Zircon. Nucl. Ind. Elev. Int. Symp., ASTM International, 1996.
  22. Aldeen A.W., Chen Z., Disher I.A., Yan K., Zhu Y. Study of Initial β-Zr Formation in β-Quenched N36 Zirconium Alloy Using Dynamic and Metallographic Methods // Crystals. 2022. V. 12. P. 1535. https://doi.org/10.3390/cryst12111535
  23. Doriot S., Verhaeghe B., Soniak-Defresne A., Bossis P., Gilbon D., Chabretou V., Mardon J.-P., Ton-That M., Ambard A. Microstructural evolution of Q12TM alloy irradiated in PWRs and comparison with other Zr base alloys / in: Zircon. Nucl. Ind. 18th Int. Symp., ASTM International, 2018.
  24. Kim H.-G., Kim I.-H., Choi B.-K., Park J.-Y., Jeong Y.-H., Kim K.-T. Study of the corrosion and microstructure with annealing conditions of a β-quenched HANA-4 alloy // Corros. Sci. 2010. V. 52. P. 3162–3167.
  25. Okada Y., Watanabe S., Teshima H., Kido T., Kameda Y. Development of M-MDA as reliable cladding and structural materials. / Proceedings of 2017 international congress on advances in nuclear power plants. Japan, 2017. 49033625.
  26. Harte A., Griffiths M., Preuss M. The characterisation of second phases in the Zr–Nb and Zr–Nb–Sn–Fe alloys: A critical review // J. Nucl. Mater. 2018. V. 505. P. 227–239. https://doi.org/10.1016/j.jnucmat.2018.03.030
  27. Sun C., Yang Z., Wu Z. Study on Corrosion Resistance of N36 Zirconium Alloy in LiOH Aqueous Solution // World J. Nucl. Sci. Technol. 2018. V. 8. P. 30–37.
  28. Liao J.-J., Yang Z.-B., Qiu S.-Y., Peng Q., Li Z.-C., Zhou M.-S., Liu H. Corrosion of new zirconium claddings in 500°C/10.3 MPa steam: effects of alloying and metallography // Acta Metall. Sin. (English Lett.) 2019. V. 32. P. 981–994.
  29. Liu W., Liu Q. Microstructure and corrosion resistance of Zr–Sn–Nb–Fe alloy // Energy Sci. Technol. 2009. V. 43. P. 630.
  30. Baek J.H., Jeong Y.H., Kim I.S. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr–0.5Nb–1.0Sn–0.5Fe–0.25Cr alloy // J. Nucl. Mater. 2000. V. 280. P. 235–245.
  31. Park J.-Y., Jeong Y.-H., Jung Y.-H. Effects of precipitation characteristics on the out-of-pile corrosion behavior of niobium-containing zirconium alloys // Met. Mater. Inter. 2001. V. 7. P. 447–455.
  32. Jeong Y.H., Lee K.O., Kim H.G. Correlation between microstructure and corrosion behavior of Zr–Nb binary alloy // J. Nucl. Mater. 2002. V. 302. P. 9–19.
  33. Jeong Y.H., Kim H.G., Kim D.J., Choi B.K., Kim J.H. Influence of Nb concentration in the α-matrix on the corrosion behavior of Zr–xNb binary alloys // J. Nucl. Mater. 2003. V. 323. P. 72–80.
  34. Liu W., Li Q., Zhou B., Yan Q., Yao M. Effect of heat treatment on the corrosion resistance of new zirconium-based alloy // Nucl. Power Eng. 2005. V. 26. P. 249–253.
  35. Kim H.-G., Park J.-Y., Jeong Y.-H. Phase boundary of the Zr-rich region in commercial grade Zr–Nb alloys // J. Nucl. Mater. 2005. V. 347. P. 140–150.
  36. Jeong Y.H., Kim H.G., Kim T.H. Effect of β phase, precipitate and Nb-concentration in matrix on corrosion and oxide characteristics of Zr–xNb alloys // J. Nucl. Mater. 2003. V. 317. P. 1–12.
  37. Kim H.G., Jeong Y.H., Kim T.H. Effect of isothermal annealing on the corrosion behavior of Zr–xNb alloys // J. Nucl. Mater. 2004. V. 326. P. 125–131.
  38. Woo O.T., Griffiths M. The role of Fe on the solubility of Nb in α-Zr // J. Nucl. Mater. 2009. V. 384. P. 77–80.
  39. Shishov V.N., Peregud M.M., Nikulina A.V., Kon’kov V.F., Novikov V.V., Markelov V.A., Khokhunova T.N., Kobylyansky G.P., Novoselov A.E., Ostrovsky Z.E. Structure-phase state, corrosion and irradiation properties of Zr–Nb–Fe–Sn system alloys // J. ASTM. 2008. V. 5. P. JAI101127.
  40. Yu H., Zhang K., Yao Z., Kirk M.A., Long F., Daymond M.R. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation // J. Nucl. Mater. 2016. V. 469. P. 9–19.
  41. Lundin C.E. The determination of the equilibrium phase diagram, zirconium–niobium. Denver. Univ. Denver Research Inst., 1959.
  42. Qiu R., Luan B., Chai L., Zhou Y., Chen J. Review of second phase particles on zirconium alloys (II): Zr–Sn–Nb–Fe alloys // Chinese J. Nonferrous Met. 2012. V. 22(6). P. 1605–1615.
  43. Eucken C.M., Finden P.T., Trapp-Pritsching S., Weidinger H.G. Influence of chemical composition on uniform corrosion of zirconium-base alloys in autoclave tests. ASTM International, 1989.
  44. Chemelle P., Knorr D.B., Van Der Sande J.B., Pelloux R.M. Morphology and composition of second phase particles in Zircaloy-2 // J. Nucl. Mater. 1983. V. 113. P. 58–64.
  45. Tao B., Qiu R., Zhao Y., Liu Y., Tan X., Luan B., Liu Q. Effects of alloying elements (Sn, Cr and Cu) on second phase particles in Zr–Sn–Nb–Fe–(Cr,Cu) alloys // J. Alloys Compd. 2018. V. 748. P. 745–757.
  46. Ka-Yu H., Chuen-Horng T. The effect of heat treatment on the microstructure and the corrosion resistance of Zircaloy-4 in 450°C steam // J. Nucl. Mater. 1985. V. 136. P. 16–29.
  47. Hong H.-S., Kim S.-J., Lee K.-S. Effects of alloying elements on the tensile properties and oxidation behavior of modified Zircaloy-4 in 360°C water // J. Nucl. Mater. 1996. V. 238. P. 211–217.
  48. Sastry D.H., Luton M.J., Jonas J.J. Stacking fault energy and its influence on high-temperature plastic flow in Zr–Sn alloys // Philos. Mag. 1974. V. 30. P. 115–127.
  49. Toffolon-Masclet C., Brachet J.C., Servant C., Joubert J.M., Barberis P., Dupin N., Zeller P. Contribution of thermodynamic calculations to metallurgical studies of multi-component zirconium based alloys. ASTM International, 2008.
  50. Chen L.-Y., Sang P., Zhang L., Song D., Chu Y.-Q., Chai L., Zhang L.-C. Homogenization and Growth Behavior of Second-Phase Particles in a Deformed Zr–Sn–Nb–Fe–Cu–Si–O Alloy // Metals (Basel). 2018. V. 8. P. 759.
  51. Zhao W., Liu Y., Jiang H., Peng Q. Effect of heat treatment and Nb and H contents on the phase transformation of N18 and N36 zirconium alloys // J. Alloys Compd. 2008. V. 462. P. 103–108. https://doi.org/10.1016/j.jallcom.2007.08.047
  52. Canay M., Danon C.A., Arias D. Phase transition temperature in the Zr-rich corner of Zr–Nb–Sn–Fe alloys // J. Nucl. Mater. 2000. V. 280. P. 365–371.
  53. Toffolon–Masclet C., Barberis P., Brachet J.-C., Mardon J.-P., Legras L. Study of Nb and Fe precipitation in α-phase temperature range (400 to 550°C) in Zr–Nb–(Fe–Sn) alloys // J. ASTM. 2005. V. 2. P. JAI12321.
  54. Stupel M.M., Bamberger M., Weiss B.Z. Determination of fe solubility in αZr by Mossbauer spectroscopy // Scr. Met. 1985. V. 19. P. 739–740.
  55. Charquet D., Hahn R., Ortlieb E., Gros J.-P., Wadier J.-F. Solubility limits and formation of intermetallic precipitates in ZrSnFeCr alloys/ in: Zircon. Nucl. Ind. Eighth Int. Symp., ASTM International, 1989.
  56. Borrelly R., Merle P., Adami L. Study of the solubility of iron in zirconium by thermoelectric power measurements // J. Nucl. Mater. 1990. V. 170. P. 147–156.
  57. Filippov V.P., Bateev A.B., Lauer Y.A., Kargin N.I. Mössbauer spectroscopy of zirconium alloys // Hyperfine Interact. 2013. V. 217. P. 45–55.
  58. Ramos C., Saragovi C., Granovsky M., Arias D. Effects of Nb content on the Zr2Fe intermetallic stability // J. Nucl. Mater. 2003. V. 312. P. 266–269.
  59. Aldeen A.W., Chen Z.W., Disher I.A., Zhu Y., Yan K. Growth Kinetics of Second Phase Particles in N36 Zirconium Alloy: Zr–Sn–Nb–Fe // J. Mater. Res. Technol. 2022. V. 17. P. 2038–2046
  60. Luan B.F., Chai L.J., Chen J.W., Zhang M., Liu Q. Growth behavior study of second phase particles in a Zr–Sn–Nb–Fe–Cr–Cu alloy // J. Nucl. Mater. 2012. V. 423. P. 127–131. https://doi.org/10.1016/j.jnucmat.2012.01.011
  61. Woo O.T., Carpenter G.J.C. Microanalytical identification of a new Zr–Nb–Fe phase/ in: Proc. 12th Int. Congr. Electron Microsc. 1990. P. 132–143.
  62. Kobylyansky G.P., Novosyolov A.E., Ostrovsky Z.E., Shamardin V.K., Obuhov A.V., Shishov V.N., Peregud M.M., Nikulina A.V. Peculiarities of Structural and Behavioral Changes of Some Zirconium Alloys at Damage Doses of Up to 50 dpa / in: Eff. Radiat. Mater. 21st Int. Symp., ASTM International, 2004.
  63. Sabol G.P., Kilp G.R., Balfour M.G., Roberts E. Development of a cladding alloy for high burnup // ASTM STP. 1989. V. 1023. P. 227–244.
  64. Yilmazbayhan A., Breval E., Motta A.T., Comstock R.J. Transmission electron microscopy examination of oxide layers formed on Zr alloys // J. Nucl. Mater. 2006. V. 349. P. 265–281.
  65. Nikulina A.V., Markelov V.A., Peregud M.M., Voevodin V.N., Panchenko V.L., Kobylyansky G.P. Irradiation-induced microstructural changes in Zr–1% Sn–1% Nb–0.4% Fe // J. Nucl. Mater. 1996. V. 238. P. 205–210.
  66. Shishov V.N., Peregud M.M., Nikulina A.V., Shebaldov P.V., Tselischev A.V., Novoselov A.E., Kobylyansky G.P., Ostrovsky Z.E., Shamardin V.K. Influence of zirconium alloy chemical composition on microstructure formation and irradiation induced growth/ in: Zircon. Nucl. Ind. Thirteen. Int. Symp., ASTM International, 2002.
  67. Shishov V.N. Phase transformation in Zr–Nb–Fe–Sn system alloys/ in: Zircon. Nucl. Ind. Sixt. Symp., 2010.
  68. Shishov V.N., Peregud M.M., Nikulina A.V., Pimenov Y.V., Kobylyansky G.P., Novoselov A.E., Ostrovsky Z.E., Obukhov A.V. Influence of structure – Phase state of Nb containing Zr alloys on irradiation-induced growth/ in: Zircon. Nucl. Ind. Fourteenth Int. Symp., ASTM International, 2005.
  69. Granovsky M.S., Canay M., Lena E., Arias D. Experimental investigation of the Zr corner of the ternary Zr–Nb–Fe phase diagram // J. Nucl. Mater. 2002. V. 302. P. 1–8. https://doi.org/10.1016/S0022-3115(02)00718-3
  70. Ramos C., Saragovi C., Granovsky M.S. Some new experimental results on the Zr–Nb–Fe system // J. Nucl. Mater. 2007. V. 366. P. 198–205.
  71. Toffolon-Masclet C., Brachet J.-C., Jago G. Studies of second phase particles in different zirconium alloys using extractive carbon replica and an electrolytic anodic dissolution procedure // J. Nucl. Mater. 2002. V. 305. P. 224–231.
  72. Legras L., Charquet D., Barberis P., Mardon J.-P. Experimental study and preliminary thermodynamic calculations of the pseudo-ternary Zr–Nb–Fe–(O,Sn) system / in: Zircon. Nucl. Ind. Thirteen. Int. Symp., ASTM International, 2002. P. 361.
  73. Barberis P., Ahlberg E., Simic N., Charquet D., Lemaignan C., Wikmark G., Dahlback M., Limback M., Tagtstrom P., Lehtinen B. Role of the second-phase particles in zirconium binary alloys // ASTM Spec. Tech. Publ. 2002. V. 1423. P. 33–55.
  74. Li Z.K., Zhou L.A., Zhang H.J., Wang W.S., Jin Z.H. The existing form of Nb in Zr–Sn–Nb–Fe alloys and its dependence on intermediate annealing // Rare Met. Mater. Eng. 2004. V. 33. P. 1362–1364.
  75. Liu W.-Q., Lei M., Geng X., Li Q., Zhou B.-X. Effect of microstructure on the corrosion resistance of Zr–Sn–Nb–Fe zirconium alloy // Trans. Mater. Heat Treat. 2006. V. 27. P. 47–51.
  76. Zhao W., Miao Z., Jiang H. Corrosion behavior of Zr–Sn–Nb alloy // J. Chinese Soc. Corros. Prot. 2009. V. 22. P. 124–128.
  77. Liang J.L., Tang Y.Y., Yan J.L. Investigation of intermediate phases and phase transition temperature of α/β in the Zr–Sn–Nb–Fe alloy // Trans. Mater. Heat Treat. 2009. V. 30. P. 32–35.
  78. Fan Q., Yuan B., Xie M., Shi M., Zhou J., Yang Z., Zhao W. Effects of hot rolling temperature and aging on the second phase particles of Zr–Sn–Nb–Fe zirconium alloy // Nucl. Mater. Energy. 2019. V. 20. P. 100700.
  79. Liang J., Zhang M., Ouyang Y., Yuan G., Zhu J., Shen J., Daymond M.R. Contribution on the phase equilibria in Zr–Nb–Fe system // J. Nucl. Mater. 2015. V. 466. P. 627–633. https://doi.org/10.1016/j.jnucmat.2015.09.005
  80. Sabol G.P., Comstock R.J., Weiner R.A., Larouere P., Stanutz R.N. In-reactor corrosion performance of ZIRLOTM and zircaloy-4 / in: Zircon. Nucl. Ind. Tenth Int. Symp., ASTM International, 1994.
  81. Korotkova N.V., Alekseeva Z.M. Topology of Zr–Nb–Fe phase diagram within the temperature range of 500 to 800°C // Izv. Akad. Nauk SSSR, Met. 1989. № 3. P. 207–214.
  82. Alekseeva Z.M., Korotkova N.V. Isothermal sections of Zr–Nb–Fe phase diagram within temperature range of 1600 to 850°C // Izv. Akad. Nauk SSSR, Met. 1989. № 1. P. 199–205.
  83. Tian H., Wang X., Gong W., Zhou J., Zhang H. Recrystallization behavior of cold-rolled Zr–1Nb alloy // J. Nucl. Mater. 2015. V. 456. P. 321–328.
  84. Kruger R.M., Adamson R.B. Precipitate behavior in zirconium-based alloys in BWRs // J. Nucl. Mater. 1993. V. 205. P. 242–250.
  85. Kobylyansky G.P., Novoselov A.E., Obukhov A.V., Ostrovsky Z.E., Shishov V.N., Peregud M.M., Markelov V.A. Radiation damage of E635 alloy under high dose irradiation in the VVER-1000 and BOR-60 reactors // J. ASTM. 2011. V. 8. P. JAI102941.
  86. Kobylyansky G., Novoselov A., Ostrovsky Z., Obukhov A., Shishin V., Shishov V., Nikulina A., Peregud M., Mahmood S., White D. Irradiation-induced growth and microstructure of recrystallized, cold worked and quenched zircaloy-2, NSF, and E635 alloys/ in: Zircon. Nucl. Ind. 15th Int. Symp., ASTM International, 2009.
  87. Ng-Yelim J., Woo O.T., Carpenter G.J.C. A replica technique for extracting precipitates from zirconium alloys for transmission electron microscopy analysis // J. Electron Microsc. Tech. 1990. V. 15. P. 400–405.
  88. Ramos C., Saragovi C., Granovsky M., Arias D. Mössbauer spectroscopy of the Zr-rich region in Zr–Nb–Fe alloys with low Nb content // Hyperfine Interact. 1999. V. 122. P. 201–207.
  89. Motta A.T., Faldowski J.A., Howe L.M., Okamoto P.R. In situ studies of phase transformations in zirconium alloys and compounds under irradiation // ASTM Spec. Tech. Publ. 1996. V. 1295. P. 557–579.
  90. Averin S.A., Panchenko V.L., Kozlov A.V., Sinelnikov L.P., Shishov V.N., Nikulina A.V. Evolution of dislocation and precipitate structure in Zr alloys under long-term irradiation // ASTM Spec. Tech. Publ. 2000. V. 1354. P. 105–121.
  91. Okamoto H. Fe–Zr (iron-zirconium) // J. Phase Equilibria Diffus. 2006. V. 27. P. 543.
  92. Stein F., Sauthoff G., Palm M. Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe–Zr system // J. Phase Equilibria. 2002. V. 23. P. 480–494.
  93. Jiang M., Oikawa K., Ikeshoji T., Wulff L., Ishida K. Thermodynamic calculations of fe-zr and fe-zr-c systems // J. Phase Equilibria. 2001. V. 22. P. 406–417.
  94. Toffolon C., Servant C. Thermodynamic assessment of the Fe–Nb system // Calphad. 2000. V. 24. P. 97–112.
  95. Abriata J.P., Bolcich J.C. The Nb–Zr (niobium–zirconium) system // J. Phase Equilibria. 1982. V. 3. P. 34–44.
  96. Arias D., Abriata J.P. The Fe–Zr (Iron-Zirconium) system // Bull. Alloy Phase Diagrams. 1988. V. 9. P. 597–604.
  97. Lu H.J., Zou N., Zhao X.S., Shen J.Y., Lu X.G., He Y.L. Thermodynamic investigation of the Zr–Fe–Nb system and its applications // Intermetallics. 2017. V. 88. P. 91–100. https://doi.org/10.1016/j.intermet.2017.05.008
  98. Havinga E.E., Damsma H., Hokkeling P. Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure I. Preparation and X-ray results // J. Less Common Met. 1972. V. 27. P. 169–186.
  99. Vincze I., Van der Woude F., Scott M.G. Local structure of amorphous Zr3Fe // Solid State Commun. 1981. V. 37. P. 567–570.
  100. Aubertin F., Gonser U., Campbell S.J., Wagner H.-G. An appraisal of the phases of the zirconium-iron system // Int. J. Mater. Res. 1985. V. 76. P. 237–244.
  101. Nevitt M.V., Downey J.W., Morris R.A., A further study of Ti2Ni-type phases containing titanium, zirconium or hafnium // Trans. Met. Soc. AIME. 1960. V. 218. P. 1019.
  102. Kuz’ma Y.B., Markiv V.Y., Voroshilov Y.V., Skolozdra R.V. X-ray structural analysis of some Zr–Fe and Zr–Co alloys // Izv. Akad. Nauk SSSR, Neorg. Mater. English Transl. See Inorg. Mater. 1966. № 2.
  103. Northwood D.O., Meng-Burany X., Warr B.D. Microstructure of Zr–2.5Nb alloy pressure tubing / in: Zircon. Nucl. Ind. Twelfth Int. Symp. ASTM STP, 1991. P. 156–176.
  104. Zhao W. Summary on out-of-pile and in-pile properties of M5 alloy // Nucl. Power Eng. 2001. V. 22. P. 60–64.
  105. Liang J., Yiyuan T., Liangqin N., Jialin Y.A.N., Zhuang Y. Intermetallics and phase transformations of the Zr–1.0Sn–0.3Nb–0.3Fe–0.1Cr alloy // Rare Met. 2008. V. 27. P. 468–472.
  106. Yang Z., Bai W., Gao N., Liu L., Zhang L. Diffusion study in BCC Zr–Nb–Ti ternary alloys // Calphad: Comput. Coupling Phase Diagrams Thermochem. 2020. V. 70. P. 101805. https://doi.org/10.1016/j.calphad.2020.101805
  107. Prokoshkin D.A., Vasil’eva E.V., Bergasova L.L. Diffusion of niobium with some high-melting metals. Inst. of Metallurgy, Moscow, 1967.
  108. Chen L., Zhang L., Chai L., Yang W., Wang L. Microstructure and corrosion behavior of a Zr–Sn–Nb–Fe–Cu–O alloy fabricated by α + β quenching processing/ in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2017. P. 12019.
  109. Chen L., Song X., Pang H., Liu L. Progress in Nuclear Energy In fl uence of second phase particles on corrosion resistance of N36 alloy in superheated steam // Prog. Nucl. Energy. 2016. V. 93. P. 84–88. https://doi.org/10.1016/j.pnucene.2016.08.002
  110. Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation // J. Nucl. Mater. 1988. V. 159. P. 190–218.
  111. Shishov Vn., Nikulina A.V., Markelov V.A., Peregud M.M., Kozlov A.V., Averin S.A., Kolbenkov S.A., Novoselov A.E. Influence of neutron irradiation on dislocation structure and phase composition of Zr-base alloys/ in: Zircon. Nucl. Ind. Elev. Int. Symp., ASTM International, 1996.
  112. Francis E.M., Harte A., Frankel P., Haigh S.J., Jädernäs D., Romero J., Hallstadius L., Preuss M. Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope // J. Nucl. Mater. 2014. V. 454. P. 387–397.
  113. Shen W., Liu C., Lei P., Ran G. Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions // Materials (Basel). 2018. V. 11. P. 2056.
  114. Lei P., Ran G., Liu C., Ye C., Lv D., Lin J., Wu Y., Xu J. In situ TEM study of microstructure evolution of Zr–Nb–Fe alloy irradiated by 800 keV Kr2+ ions // Materials (Basel). 2017. V. 10. P. 437.
  115. Gros J.P., Wadier J.F. Precipitate growth kinetics in Zircaloy-4 // J. Nucl. Mater. 1990. V. 172. P. 85–96.
  116. Dupin N., Ansara I., Servant C., Toffolon C., Lemaignan C., Brachet J.C. A thermodynamic database for zirconium alloys // J. Nucl. Mater. 1999. V. 275. P. 287–295.
  117. Krishnan R., Asundi M.K. Zirconium alloys in nuclear technology // Proc. Indian Acad. Sci. Sect. C Eng. Sci. 1981. V. 4. P. 41–56.
  118. Naik M.C., Agarwala R.P. Self and impurity diffusion in alpha-zirconium // Acta Metall. 1967. V. 15. P. 1521–1525.
  119. Horvath J., Dyment F., Mehrer H. Anomalous self-diffusion in a single crystal of α-zirconium // J. Nucl. Mater. 1984. V. 126. P. 206–214.
  120. Perez R.A., Nakajima H., Dyment F. Diffusion in α-Ti and Zr // Mater. Trans. 2003. V. 44. P. 2–13.
  121. Agarwala R.P. Diffusion and Defect Studies in Zirconium and some of its Alloys. Trans Tech Publ, 2004.
  122. Nakajima H., Hood G.M., Schultz R.J. Diffusion of 59Fe in single-crystal α-Zr // Philos. Mag. B. 1988. V. 58. P. 319–337.
  123. Zhu Y.T., Devletian J.H. Precise determination of isomorphous and eutectoid transformation temperatures in binary and ternary Zr alloys // J. Mater. Sci. 1991. V. 26. P. 6218–6222.
  124. Zhu Y.T., Lowe T.C. Application of, and precautions for the use of, the rule of additivity in phase transformation // Metall. Mater. Trans. B. 2000. V. 31. P. 675–682.
  125. Gruzin P.L., Emelyanov V.S., Ryabova G.G., Federov G.B. in: Proc. Second Conf. Peac. Uses At. Energy, Geneva, 1958.
  126. Laik A., Dey G.K. Diffusion in Nuclear Materials/ in: Handb. Solid State Diffus. V. 2. Elsevier, 2017. P. 339–377.
  127. Lyashenko V.S., Bykov V.N., Pavlenov L.V. Self-diffusion of zirconium and zirconium alloys with tin // Fiz. Met. i Met. 1959. №. 8. P. 362–369.
  128. Piotrkowski R., Dyment F. Nb95 and Ni63 diffusion along the α¦ β interphase boundaries of A Zr–2.5 wt % Nb alloy // J. Nucl. Mater. 1986. V. 137. P. 94–99.
  129. Iribarren M.J., Dyment F. 95Zr Diffusion along the α/β interphase boundaries of a Zr–2.5Nb alloy // J. Nucl. Mater. 1989. V. 161. P. 148–152.
  130. Piotrkowski R. Comments on α-β phase boundary self-diffusion in Zr–2.5% Nb alloys // J. Nucl. Mater. 1991. V. 183. P. 221–225.
  131. Tiwari G.P., Sharma B.D., Raghunathan V.S., Patil R.V. Self-and solute-diffusion in dilute zirconium-niobium alloys in β-phase // J. Nucl. Mater. 1973. V. 46. P. 35–40.
  132. Toffolon-Masclet C., Brachet J.C., Servant C., Joubert J.M., Barberis P., Dupin N., Zeller P. Contribution of thermodynamic calculations to metallurgical studies of multi-component zirconium based alloys // J. ASTM. 2008. V. 5. JAI101122.
  133. Toffolon C., Brachet J.C., Servant C., Legras L., Charquet D., Barberis P., Mardon J.P. Experimental study and preliminary thermodynamic calculations of the pseudo-ternary Zr–Nb–Fe–(O,Sn) system // ASTM Spec. Tech. Publ. 2002. P. 361–382. https://doi.org/10.1520/stp11397s

Дополнительные файлы


© А.В. Алдин, Чж.В. Чэнь, И.А. Дишер, М. Самиуддин, К. Янь, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах