Microwave Radiation Absorption at a Frequency of 2.45 GHz by a Composite Based on the Dust of Electrical Arc Steel-Making Furnaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical transformations and electromagnetic properties of a composite based on the dust of electrical arc steel-making furnaces and a carbon-containing material (hydrolysis lignin) have been studied. The complex dielectric permittivity of the studied material was measured by the resonator method during heating to 800°C. At room temperature, the effective values of the magnetic permeability and loss of the composite mixture were calculated by solving the Bruggeman equation according to the effective medium theory. The magnetic permeability during heating was found by orthogonal regression. The numerical model
of heating a dense packing from several layers of studied material grains was constructed by the finite element method with consideration of the real properties and physicochemical transformations.

About the authors

A. P. Anzulevich

Chelyabinsk State University Named after the Kashiriny Brothers

Email: anzul@list.ru
Chelyabinsk 452500 Russia

D. A. Pavlov

Chelyabinsk State University Named after the Kashiriny Brothers

Email: anzul@list.ru
Chelyabinsk 452500 Russia

D. A. Kalganov

Chelyabinsk State University Named after the Kashiriny Brothers; Institute of Fine Mechanics and Optics National Research University

Email: anzul@list.ru
Chelyabinsk 452500 Russia; St. Petersburg, 191002 Russia

L. N. But’ko

Chelyabinsk State University Named after the Kashiriny Brothers

Email: anzul@list.ru
Chelyabinsk 452500 Russia

V. A. Tolkachev

Chelyabinsk State University Named after the Kashiriny Brothers

Email: anzul@list.ru
Chelyabinsk 452500 Russia

L. Yu. Kovalenko

Chelyabinsk State University Named after the Kashiriny Brothers

Email: anzul@list.ru
Chelyabinsk 452500 Russia

Z. Peng

Central South University, School of Minerals Processing and Bioengineering

Author for correspondence.
Email: anzul@list.ru
Hunan, Changsha, 410083 China

References

  1. Паньшин А.М., Шакирзянов Р.М., Избрехт П.А. Основные направления совершенствования производства цинка на ОАО Челябинский цинковый завод // Цветные металлы. 2015. Т. 5. С. 19–21.
  2. Симонян Л.М., Демидова Н.В. Исследование процесса безуглеродного селективного извлечения цинка и свинца из пыли ДСП // Изв. Вузов. Черная металлургия. 2020. Т. 63. С. 631–638.
  3. Любов В.К., Попова Е.И., Попов А.Н. Торрефакция гидролизного лигнина // Химия твердого топлива. 2018. Т. 4. С. 24–33.
  4. Ye Q., Li G., Peng Z., Augustine R., Pérez M.D., Liu Y., Liu M., Rao M., Zhang Y., Jiang T. Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron // Powder Techn. 2020. V. 362. P. 781–789.
  5. Ryazanov A.G., Mikhailov G.G., Khmeleva O.V., Savi-na Y.D., Galimov D.M., Senin A.V. Investigation of dielectric heating method of zinc-containing materials for chlorides removal // IOP Conference Series: Earth and Environmental. 2021. V. 938. P. 012003.
  6. Xue Y., Hao X., Liu X., Zhang N. Recovery of Zinc and Iron from Steel Mill Dust–An Overview of Available Technologies // Materials. 2022. V. 15. P. 4127.
  7. Ye L., Peng Z., Ye Q., Wang L., Augustine R., Pe-rez M., Liu Y., Liu M., Tang H., Rao M., Li G. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust // Waste Management. 2021. V. 135. P. 389–396.
  8. Anzulevich A., Butko L., Kalganov D., Pav-lov D., Tolkachev V., Fedii A., Buchelnikov V., Peng Z. Optimization of the Microwave-Assisted Carbothermical Reduction Process for Metals from Electric Arc Furnace Dust with Biochar // Metals. 2021. V. 11. P. 1765.
  9. Hotta M., Hayashi M., Nishikata A., Nagata K. Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5 GHz // J. Iron Steel Institute. 2009. V. 49. P. 1443–1448.
  10. Huang J., Liu Y., Li Y., Liu X. Microwave electromagentic and absorption properties of AFe2O4 (A = Ni, Mn, Zn) ferrites // In Proceedings of the International Conference on Manufacturing Construction and Energy Engineering (MCEE). 2016. V. 1. P. 17–18.
  11. Torsello D., Bartoli M., Giorcelli M., Rovere M., Arrigo R., Malucelli G., Tagliaferro A., Ghigo G. High frequency electromagnetic shielding by biochar-based composites // Nanomaterials. 2021. V. 11. P. 2383.
  12. Omran M., Fabritius T., Yu Y., Heikkinen E.P., Chen G., Kacar Y. Improving zinc recovery from steelmaking dust by switching from conventional heating to microwave heating // J. Sustain. Metal. 2021. V. 7. P. 15–26.
  13. Ye L., Peng Z., Wang L., Anzulevich A., Bychkov I., Kalganov D., Tang H., Rao M., Li G., Jiang T. Use of biochar for sustainable ferrous metallurgy // The J. Miner. Met. Mater. Soc. (TMS). 2019. V. 71. P. 3931–3940.
  14. Xiong L., Peng Z., Mao X., Wang J., Rao M., Zhang Y., Li G. Efficient Utilization of Carbon-Bearing Dusts in Composite Agglomeration Process for Iron Ore Sintering // J. Sustainable Metal. 2022. V. 8. P. 1065–1077.
  15. Omran M., Fabritius T. Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts // Powder Techn. 2017. V. 308. P. 47–60.
  16. Anzulevich A.P., Butko L.N., Bychkov I.V., Buchelnikov V.D., Kalganov D.A., Pavlov D.A., Fediy A.A., Kharitonova O.G., Moiseev S.G. Dynamic magnetic losses in powders consisting of metallized dielectric particles at microwaves // J. Magn. Magn. Mater. 2017. V. 444. P. 307–312.
  17. Ye L., Peng Z., Wang L., Anzulevich A., Bychkov I., Tang H., Rao M., Zhang Y., Li G., Jiang T. Preparation of core-shell iron ore-biochar composite pellets for microwave reduction // Powder Techn. 2018. V. 338. P. 365–375.
  18. Пархоменко М.П., Каленов Д.С., Федосеев Н.А., Еремин И.С., Колесникова В.М., Ковтыков Д.А. Улучшенный резонаторный метод для измерения комплексной диэлектрической проницаемости материалов // Радиотехника и электроника. 2017. V. 62. P. 651–656.
  19. Peng Z., Hwang J.Y., Andriese M. Absorber impedance matching in microwave heating // Appl. Phys. Express. 2012. V. 5. P. 077301.
  20. Button K., Lax B. Theory of ferrites in rectangular waveguides // IRE Trans. Antennas and Propagation. 1956. V. 4. P. 531–537.
  21. Enders A. An accurate measurement technique for line properties, junction effects, and dielectric and magnetic material parameters // IEEE Trans. Microwave theory Techniques. 1989. V. 37. P. 598–605.
  22. Hasar U.C. A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination // Progress In Electromagnetics Research. 2009. V. 93. P. 161–176.
  23. Hasar U.C. Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture // IEEE Trans. Microwave Theory Techniques. 2010. V. 58. P. 451–457.
  24. Huang J., Liu Y., Li Y., Liu X. Microwave electromagentic and absorption properties of AFe2O4 (A = Ni, Mn, Zn) ferrites // In Proceedings of the International Conference on Manufacturing Construction and Energy Engineering (MCEE). Hong Kong, China. 2016. P. 17–18.
  25. Rybakov K.I., Semenov V.E., Egorov S.V., Eremeev A.G., Plotnikov I.V., Bykov Y.V. Microwave heating of conductive powder materials // J. Appl. Phys. 2006. V. 99. P. 023506.
  26. Курушин А.А. Использование каналов Флоке для моделирования периодической наноструктуры // Журнал радиоэлектроники. 2010. V. 11. P. 1–22.
  27. Wang L., Peng Z., Lin X., Ye Q., Ye L., Zhang J., Liu Y., Liu M., Rao M., Li G., Jiang T. Microwave-intensified treatment of low-zinc EAF dust: A route toward high-grade metallized product with a focus on multiple elements // Powder Technology. 2021. V. 383. P. 509–521.
  28. Buschow K.H.J. Concise Encyclopedia of Magnetic and Superconducting Materials. Elsevier Ltd., Kidlington, Oxford. 2001. p. 1339.
  29. Mazanek E., Wyderko M. Kinetics and Phase Transitions During Reduction of Low-Porous Iron Ores // Polska Akademia Nauk Prace Kommunika Metalurgia. 1974. V. 22. P. 55–64.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (95KB)
4.

Download (77KB)
5.

Download (137KB)
6.

Download (132KB)
7.

Download (56KB)
8.

Download (151KB)
9.

Download (80KB)
10.

Download (407KB)
11.

Download (98KB)
12.

Download (95KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».