Features of the Magnetic State of an Ordered Array of Ferromagnetic Ribbons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features of the magnetic state of an array of parallel oriented permalloy ribbons are discussed. The arrays are made by explosive lithography. The ribbons have a thickness of 180 nm, a width of 2.8 μm, and a length of about 4 mm. The distance between ribbons in different samples varies in the range from 300 nm to 4 μm. It is found that the ribbons in the regions far from the end faces are in a single-domain state with small-angle ripples, the magnetization distribution of which correlates with inhomogeneities of the ribbon side surfaces. Moreover, there is a distinct relationship in the spatial distribution of the ripples between adja-cent ribbons with a relatively small distance between them. This makes it possible to evaluate the role of the magnetostatic coupling of magnetic subsystems of array elements and to estimate the characteristic value of the random stray field that pins the magnetization.

Sobre autores

V. Orlov

Siberian Federal University; Kirenskii Institute of Physics, Russian Academy of Sciences

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660041 Russia; Krasnoyarsk, 660036 Russia

R. Rudenko

Siberian Federal University

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660041 Russia

A. Luk’yanenko

Kirenskii Institute of Physics, Russian Academy of Sciences

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660036 Russia

V. Yakovchuk

Kirenskii Institute of Physics, Russian Academy of Sciences

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660036 Russia

V. Komarov

Kirenskii Institute of Physics, Russian Academy of Sciences

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660036 Russia

V. Prokopenko

Astaf’ev Krasnoyrsk State Pedagogical University

Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660049 Russia

I. Orlova

Astaf’ev Krasnoyrsk State Pedagogical University

Autor responsável pela correspondência
Email: vaorlov@sfu-kras.ru
Krasnoyarsk, 660049 Russia

Bibliografia

  1. Allwood D.A., Xiong G., Faulkner C.C., Atkinson D., Petit D., Cowburn R.P. Magnetic Domain-Wall Logic // Science 2005. V. 309. P. 1688–1692.
  2. Hayashi M., Thomas L., Moriya R., Rettner C., Parkin S.S.P. Current-Controlled Magnetic Domain-Wall Nanowire Shift Register // Science 2008. V. 320. P. 209–211.
  3. Parkin S.S.P., Hayashi M., Thomas L. Magnetic Domain-Wall Racetrack Memory // Science 2008. V. 320. P. 190–194.
  4. Walker B.W., Cui C., Garcia-Sanchez F., Incorvia J.A.C., Hu X., Friedman J.S. Skyrmion Logic Clocked via Voltage Controlled Magnetic Anisotropy // (arXiv:2103.02724v2 [cond-mat.mes-hall] 5 Mar 2021).
  5. Song J.-F., Bird J.P., Ochiai Y. A nanowire magnetic memory cell based on a periodic magnetic superlattice // J. Phys.: Condens. Matter. 2005. V. 17. P. 5263–5268.
  6. Kozlov A.G., Stebliy M.E., Ognev A.V., Samardak A.S., Davydenko A.V., Chebotkevich L.A. Effective magnetic anisotropy manipulation by oblique deposition in magnetostatically coupled co nanostrip arrays // J. Magn. Magn. Mater. 2017. V. 422. P. 452–457.
  7. Kozlov A.G., Stebliy M.E., Ognev A.V., Samardak A.S., Chebotkevich L.A. Micromagnetic Structure of Co Stripe Arrays With Tuned Anisotropy // IEEE Trans ON Magn. 2015. V. 51(11). P. 2 301 604.
  8. Purnama I., Chandra Sekhar M., Goolaup S., Lew W.S. Current-induced coupled domain wall motions in a two-nanowire system // Appl. Phys. Lett. 2011. V. 99. P. 152501.
  9. Iglesias–Freire O., Jaafar M., Perez L., O. de Abril, Vazquez M., Asenjo A. Domain configuration and magnetization switching in arrays of permalloy nanostripes // J. Magn. Magn. Mater. 2014. V. 355. P. 152–157.
  10. Krishnia S., Purnama I., Lew W.S. Remote Walker breakdown and coupling breaking in parallel nanowire systems // Appl. Phys. Lett. 2014. V. 105. P. 042404.
  11. O’Brien Д., Lewis L.R., Fernandez-Pacheco A., Petit D., Cowburn R.P. Dynamic Oscillations of Coupled Domain Walls // Phys. Rev. Lett. 2012. V. 108. P. 187202.
  12. Su Y., Sun J., Hu J., Lei H. Current-driven spring-like oscillatory motion of coupled vortex walls in a two-nanostripe system // EPL 2013. V. 103. P. 67004.
  13. Galkiewicz A.T., O’Brien L., Keatley P.S., Cowburn R.P., Crowell P.A. Resonance in magnetostatically coupled transverse domain walls // Phys. Rev. B 2014. V. 90. P. 024420.
  14. Youk H., Chern G.-W., Merit K., Oppenheimer B., Tcher-nyshyov O. Composite domain walls in flat nanomagnets: The magnetostatic limit // J. Appl. Phys. 2006. V. 99. P. 08B101.
  15. Rougemaille N., Uhlнr V., Fruchart O., Pizzini S., Vogel J., Toussaint J.C. Phase diagram of magnetic domain walls in spin valve nano-stripes // Appl. Phys. Lett. 2012. V. 100. P. 172404.
  16. Thiaville A., Nakatani Y. Domain-Wall Dynamics in Nanowires and Nanostrips // Appl. Phys. 2006. V. 101. P. 161–205.
  17. Jamet S., Rougemaille N., Toussaint J.C., Fruchart O. 25 – Head-to-head domain walls in one-dimensional nanostructures: An extended phase diagram ranging from strips to cylindrical wires, Editor(s): Manuel Vazquez // In Woodhead Publishing Series in Electronic and Optical Materials, Magnetic Nano- and Microwires, Woodhead Publishing, 2015. P. 783–811 (ISBN 9780081001646)
  18. Janutka A. Complexes of Domain Walls in Ferromagnetic Stripes // Acta Phys. Polonica A. 2013. V. 124. P. 641–648.
  19. Orlov V.A., Ivanov A.A., Orlova I.N. On the Effect of Magnetostatic Interaction on the Collective Motion of Vortex Domain Walls in a Pair of Nanostripes // Phys. Stat. Sol. B. 2019. P. 1900113.
  20. Nguyen V.D., Fruchart O., Pizzini S., Vogel J., Toussaint J.-C., Rougemaille N. Third type of domain wall in soft magnetic nanostrips // Scientific RepoRts. V. 5. P. 12 417. https://doi.org/10.1038/srep12417
  21. Иванов А.А., Орлов В.А. Сравнительный анализ механизмов закрепления доменной стенки в нанопроволоке // ФТТ. 2011. Т. 53. С. 2318–2326.
  22. Bogart L.K., Atkinson D., O’Shea K., McGrouther D., McVitie S. Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires // Phys. Rev. B 2009. V. 79. P. 054414.
  23. Brandao J., Novak L.K., Lozano H., Soledade P.R., Mello A., Garcia F., Sampaio L.C. Control of the magnetic vortex chirality in Permalloy nanowires with asymmetric notches // J. Appl. Phys. 2014. V. 116. P. 193902.
  24. Burn D.M., Arac E., Atkinson D. Magnetization switching and domain-wall propagation behavior in edge-modulated ferromagnetic nanowire structures // Phys. Rev. B 2013. V. 88. P. 104422.
  25. Kim K.-J., Gim G.-H., Lee J.-C., Ahn S.-M., Lee K.-S., Cho Y. J., Lee C.-W., Seo S., Shin K.-H., Choe S.-B. Depinning Field at Notches of Ferromagnetic Nanowires With Perpendicular Magnetic Anisotropy // IEEE Trans. On Magn. 2009. V. 45(10). P. 4056–4058.
  26. Vidal E.V., Ivanov Y.P., Mohammed H., Kosel J. A detailed study of magnetization reversal in individual Ni nanowires // Appl. Phys. Lett. 2015. V. 106, P. 032403.
  27. Guslienko K.Yu., Novosad V. Vortex state stability in soft magnetic cylindrical nanodots // J. Appl. Phys. 2004. V. 96. P. 4451.
  28. Scholz W., Guslienko K.Yu., Novosad V., Suess D., Schrefl T., Chantrell R.W., Fidler J. Transition from single-domain to vortex state in soft magnetic cylindrical nanodots // J. Magn. Magn. Mater. 2003. V. 266. P. 155–163.
  29. Rougemaille N., Uhlor V., Fruchart O., Pizzini S., Vogel J., Toussaint J.-C. Phase diagram of magnetic domain walls in spin valve nano-stripes // App. Phys. Lett. 2012. V. 100(17). P. 172 404.
  30. Иванов А.А., Орлов В.А. Сценарии перемагничивания тонких проволок // ФТТ. 2015. Т. 57. С. 2143–2150.
  31. Neel L. Sur un nouveau mode de couplage entre les aimantations de deux couches minces ferromagnйtiques. Comptes Rendus Hebdomadaires Des Seances De // Academ. des Sci. 1962. V. 255(15). P. 1676–1681.
  32. Kamali Ashtiani M.J., Mokhtarzadeh M., Hamdi M., Mohseni S.M. Morphological magnetostatic coupling in spin valves due to anisotropic self-affine interface roughness // J. Appl. Phys. 2020. V. 127. P. 095301.
  33. Tiusan C., Hehn M., Ounadjela K. Magnetic-roughness-induced magnetostatic interactions in magnetic tunnel junctions // Eur. Phys. J. B 2002. V. 26. P. 431–434.
  34. Goolaup S., Singh N., Adeyeye A.O. Coercivity Variation in Ni80Fe20 Ferromagnetic Nanowires // IEEE Trans. Nanotech. 2005. V. 4(5). P. 523–526.
  35. Orlov V.A., Patrin G.S., Dolgopolova M.V., Orlova I.N. Magnetic vortex near the extended linear magnetic inhomogeneity // J. Magn. Magn. Mater. 2021. V. 533. P. 167 999.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (764KB)
3.

Baixar (474KB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (197KB)
7.

Baixar (529KB)
8.

Baixar (1MB)
9.

Baixar (303KB)

Declaração de direitos autorais © В.А. Орлов, Р.Ю. Руденко, А.В. Лукьяненко, В.Ю. Яковчук, В.А. Комаров, В.С. Прокопенко, И.Н. Орлова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies