The Effect of La on the Microstructure and Mechanical Properties of the (Al) + Al4(Ca,La) Wrought Alloys

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This article is devoted to optimization of the chemical composition of the high-tech Al–3 wt %Ca–(0.5–2.0) wt % La–1.5 wt % Mn alloys. The perspective of a decrease in the content of lanthanum from 2 to 0.5 wt % in new alloys has been validated using advanced methods for analyzing the structure and phase composition (electron microscopy, X-ray phase analysis, thermodynamic calculation) and using the analysis of mechanical (tensile) properties formed in the course of deformation treatment. The evolution of the struc-ture of the alloys was studied in the course of thermodeformation treatment. It has been shown that upon hot rolling at 400°С with no preliminary annealing of ingots it is possible to obtain high-quality deformed semiproducts (sheets) with no surface and edge defects (up to a 90% reduction). The deformation treatment
provides the formation of a structure with inclusions of a (Al,Mn)4(Ca,La) eutectic phase uniformly distrib-uted in an aluminum matrix and found in a form of ring-shaped precipitates of submicron sizes (300 × 150 nm). In addition, the formation of a net of low-angle boundaries (subgrains) with a mean size of ~1 μm is observed; some inclusions of a eutectic phase are found along these boundaries. This combination of struc-tural characteristics mainly determines the ability of reaching favorable mechanical properties of an alloy after hot rolling with 0.5 wt % La (the ultimate strength of 240–260 MPa, yield strength of 185–205 MPa, and rel-ative elongation of 5.5–9.0%), which are comparable with the properties of the previously studied alloy with up to 2 wt % La.

作者简介

N. Letyagin

National University of Science and Technology MISiS; Moscow Polytechnic University

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia; Moscow, 107023 Russia

T. Akopyan

National University of Science and Technology MISiS; Moscow Polytechnic University

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia; Moscow, 107023 Russia

Z. Nguen

National University of Science and Technology MISiS

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia

T. Sviridova

National University of Science and Technology MISiS

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia

A. Koshmin

National University of Science and Technology MISiS

Email: n.v.letyagin@gmail.com
Moscow, 119049 Russia

A. Aksenov

Moscow Polytechnic University

编辑信件的主要联系方式.
Email: n.v.letyagin@gmail.com
Moscow, 107023 Russia

参考

  1. Dimatteo V., Liverani E., Ascari A., Fortunato A. Weldability and mechanical properties of dissimilar laser welded aluminum alloys thin sheets produced by conventional rolling and Additive Manufacturing // J. Mater. Proces. Tech. 2022. V. 302. P. 117512.
  2. Cui L., Peng Z., Chang Y., He D., Cab Q., Guo X., Zeng Y. Porosity, microstructure and mechanical property of welded joints produced by different laser welding processes in selective laser melting AlSi10Mg alloys // Optics and Laser Technology. 2022. V. 150. P. 107952.
  3. Ascari A., Fortunato A., Liverani E., Gamberoni A. Tomesani L. New possibilities in the fabrication of hybrid components with big dimensions by means of selective laser melting (SLM) // Phys. Procedia. 2016. V. 83. P. 839–846.
  4. Chen L., Wang C., Xiong L., Zhang X., Mi G. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations // Mater. Design. 2020. V. 191. P. 108625.
  5. Белов Н.А., Наумова Е.А., Акопян Т.К. Эвтектические сплавы на основе алюминия: новые системы легирования. М.: Руда и металлы, 2016. 256 с.
  6. Летягин Н.В., Шуркин П.К., Нгуен З., Кошмин А.Н. Влияние термодеформационной обработки на структуру и механические свойства сплава Al3Ca1Cu1.5Mn // ФММ. 2021. Т. 122. С. 873–879.
  7. Naumova E., Doroshenko V., Barykin M., Sviridova T., Lyasnikova A., Shurkin P. Hypereutectic Al–Ca–Mn–Ni) Alloys as Natural Eutectic Composites // Metals. 2021. V. 11. P. 890.
  8. Shurkin P.K., Letyagin N.V., Yakushkova A.I., Samoshina M.E., Ozherelkov D.Yu., Akopyan T.K. Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion // Mater. Lett. 2021. V. 285. P. 129074.
  9. Акопян Т.К., Летягин Н.В., Белов Н.А., Кошмин А.Н., Гизатулин Д.Ш. Анализ микроструктуры и механических свойств нового деформируемого сплава на основе ((Al) + Al4(Ca,La)) эвтектики // ФММ. 2020. Т.121. № 9. С. 1003–1008.
  10. Akopyan T.K., Letyagin N.V., Sviridova T.A., Korotkova N.O., Prosviryakov, A.S. New Casting Alloys Based on the Al + Al4(Ca,La) Eutectic // JOM. 2020. V. 72. P. 3779–3786.
  11. Akopyan T.K., Belov N.A., Naumova E.A., Letyagin N.V., Sviridova T.A. Al-matrix composite based on Al–Ca–Ni–La system additionally reinforced by L12 type nanoparticles // Trans. Nonferrous Metals Soc. China. 2020. № 30. P. 850–862.
  12. Shurkin P.K., Belov N.A., Musin A.F. Aksenov A.A. Novel High-Strength Casting Al–Zn–Mg–Ca–Fe Aluminum Alloy without Heat Treatment // Rus. J. Non-Ferrous Metals. 2020. V. 61. P. 179–187.
  13. Raabe D., Tasan, C.C., Olivetti E.A. Strategies for improving the sustainability of structural metals // Nature. 2019. V. 575. P. 64–74.
  14. Das S.K., Green J.A.S., Kaufman J.G. The development of recycle-friendly automotive aluminum alloys // JOM. 2007. V. 59. P. 47–51.
  15. Das S.K. Designing aluminium alloys for a recycling friendly world // Mater. Sci. Forum. 2006. V. 519–521. P. 1239–1244.
  16. Mondolfo L.F. Aluminium Alloys: Structure and Properties. Butterworths: London, UK. 1976. P. 806–841.
  17. Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams / by eds. Petzow G, Effenberg G. Weinheim: Wiley-VCH, 1990. V. 3. 647 p.
  18. Belov N.A., Naumova E.A., Akopyan T.K. Doroshenko V.V. Phase Diagram of the Al–Ca–Fe–Si System and Its Application for the Design of Aluminum Matrix Composites // JOM. 2018. V. 70. P. 2710–2715.
  19. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystalline // Metal Sci Heat Treatment. 2000. V. 42. P. 309–313.
  20. Cinkilic E., Yan X., Luo A.A. Modeling Precipitation Hardening and Yield Strength in Cast Al–Si–Mg–Mn Alloys // Metals. 2020. V. 10. P. 1356.
  21. Thangaraju S., Heilmaier M., Murty B.S., Vadlamani S.S. On the Estimation of True Hall–Petch Constants and Their Role on the Superposition Law Exponent in Al Alloys // Adv. Eng. Mater. 2012. V. 14. P. 892–897.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (1MB)
5.

下载 (152KB)

版权所有 © Н.В. Летягин, Т.К. Акопян, З. Нгуен, Т.А. Свиридова, А.Н. Кошмин, А.А. Аксёнов, 2023

##common.cookie##