Methods of Monitoring Parameters of the Blending of Dissimilar Fibers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A survey is made of the methods used to monitor parameters of the blending of dissimilar fibers. The methods that are based on visual analysis are time-consuming and are used only under laboratory conditions, since the product is destroyed in the course of the test. In addition, special preparation of the product is necessary to obtain a representative cross section and a satisfactory image of it. A new method is proposed in this article, the method involving an upgrade of existing capacitance-based electronic instruments by providing them with an additional transducer that can evaluate the efficiency with which fiber blends are processed under factory conditions. The coefficient of variation of the anisotropy coefficient for permittivity is determined to show the degree of nonuniformity of products’ compositions. Units based on the use of electromagnetic radiation in the IR and SHF ranges are examined, these instruments making it possible to determine the percentage contents and linear densities of the components of a blend. A new system for automatic monitoring of parameters that characterize the blending of natural and chemical fibers is described. The system is based on a universal attachment for electro-optic transducers that monitor blending parameters on the basis of multiple total-internal-reflection spectroscopy.

Об авторах

A. Kazarova

Moscow State University of Design and Technology

Email: nvg1648@gmail.com
Россия, Moscow

E. Ryzhkova

Moscow State University of Design and Technology

Email: nvg1648@gmail.com
Россия, Moscow

S. Vinichenko

Moscow State University of Design and Technology

Email: nvg1648@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).