Solution of the boundary value problem for the equations of steady-state flow of a viscous incompressible nonisothermal fluid past a heated rigid spherical particle
- Авторлар: Malai N.V.1,2, Shchukin E.R.1,2
-
Мекемелер:
- National Research University “Belgorod State University,”
- Joint Institute for High Temperatures
- Шығарылым: Том 53, № 6 (2017)
- Беттер: 766-772
- Бөлім: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/154430
- DOI: https://doi.org/10.1134/S0012266117060076
- ID: 154430
Дәйексөз келтіру
Аннотация
We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We obtain expressions for the mass velocity components and pressure. The solution of the boundary value problem is sought in the form of an expansion in Legendre polynomials.
Авторлар туралы
N. Malai
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
Хат алмасуға жауапты Автор.
Email: malay@bsu.edu.ru
Ресей, Belgorod, 308015; Moscow, 125412
E. Shchukin
National Research University “Belgorod State University,”; Joint Institute for High Temperatures
Email: malay@bsu.edu.ru
Ресей, Belgorod, 308015; Moscow, 125412
Қосымша файлдар
