Information Meaning of Entropy of Nonergodic Measures


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The limit frequency properties of trajectories of the simplest dynamical system generated by the left shift on the space of sequences of letters from a finite alphabet are studied. The following modification of the Shannon-McMillan-Breiman theorem is proved: for any invariant (not necessarily ergodic) probability measure μ on the sequence space, the logarithm of the cardinality of the set of all μ-typical sequences of length n is equivalent to nh(μ), where h(μ) is the entropy of the measure μ. Here a typical finite sequence of letters is understood as a sequence such that the empirical measure generated by it is close to μ (in the weak topology).

Авторлар туралы

V. Bakhtin

John Paul II Catholic University of Lublin; Belarusian State University

Хат алмасуға жауапты Автор.
Email: bakhtin@tut.by
Польша, Lublin, 20-950; Minsk, 220030

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019