Monotone Finite-Difference Schemes of Second-Order Accuracy for Quasilinear Parabolic Equations with Mixed Derivatives


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the initial-boundary value problem for quasilinear parabolic equation with mixed derivatives and an unbounded nonlinearity. We construct unconditionally monotone and conservative finite-difference schemes of the second-order accuracy for arbitrary sign alternating coefficients of the equation. For the finite-difference solution, we obtain a two-sided estimate completely consistent with similar estimates for the solution of the differential problem, and also obtain an important a priori estimate in the uniform C-norm. These estimates are used to prove the convergence of finite-difference schemes in the grid L2-norm. All theoretical results are obtained under the assumption that some conditions imposed only on the input data of the differential problem are satisfied.

Авторлар туралы

P. Matus

Institute of Mathematics; John Paul II Catholic University of Lublin

Хат алмасуға жауапты Автор.
Email: matus@im.bas-net.by
Белоруссия, Minsk, 220072; Lublin, 20-950

L. Hieu

University of Economics - The University of Danang

Хат алмасуға жауапты Автор.
Email: hieulm@due.edu.vn
Вьетнам, Danang

D. Pylak

John Paul II Catholic University of Lublin

Хат алмасуға жауапты Автор.
Email: dorotab@kul.pl
Польша, Lublin, 20-950

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019