Wiener–Hopf equation whose kernel is a probability distribution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove the existence of a solution of an inhomogeneous generalized Wiener–Hopf equation whose kernel is a probability distribution on R generating a random walk drifting to +∞, while the inhomogeneous term f of the equation belongs to the space L1(0,∞) or L(0,∞). We establish the asymptotic properties of the solution of this equation under various assumptions about the inhomogeneity f.

作者简介

M. Sgibnev

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: sgibnev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017