Solvability of a Nonlinear Boundary Value Problem with a Small Parameter


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the solvability of a nonlinear boundary value problem for a partial differential equation with a small parameter multiplying the nonlinearity. The solvability conditions are first derived for the corresponding linear problem by the Fourier method and then used to state and prove theorems about the solvability of the nonlinear boundary value problem. If the corresponding homogeneous linear boundary value problem has nonzero solutions, then the solvability of the nonlinear boundary value problem is established using ideas of the Pon-tryagin method and the methods and means of the theory of rotation of completely continuous vector fields.

作者简介

E. Mukhamadiev

Vologda State University

编辑信件的主要联系方式.
Email: emuhamadiev@rambler.ru
俄罗斯联邦, Vologda, 160000

A. Naimov

Vologda State University

编辑信件的主要联系方式.
Email: nan67@rambler.ru
俄罗斯联邦, Vologda, 160000

A. Sattorov

Khujand State University

编辑信件的主要联系方式.
Email: stahhs@rambler.ru
塔吉克斯坦, Khujand, 735700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019