Solvability of a Nonlinear Boundary Value Problem with a Small Parameter
- 作者: Mukhamadiev E.1, Naimov A.N.1, Sattorov A.K.2
-
隶属关系:
- Vologda State University
- Khujand State University
- 期: 卷 55, 编号 8 (2019)
- 页面: 1094-1104
- 栏目: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/155135
- DOI: https://doi.org/10.1134/S001226611908010X
- ID: 155135
如何引用文章
详细
We study the solvability of a nonlinear boundary value problem for a partial differential equation with a small parameter multiplying the nonlinearity. The solvability conditions are first derived for the corresponding linear problem by the Fourier method and then used to state and prove theorems about the solvability of the nonlinear boundary value problem. If the corresponding homogeneous linear boundary value problem has nonzero solutions, then the solvability of the nonlinear boundary value problem is established using ideas of the Pon-tryagin method and the methods and means of the theory of rotation of completely continuous vector fields.
作者简介
E. Mukhamadiev
Vologda State University
编辑信件的主要联系方式.
Email: emuhamadiev@rambler.ru
俄罗斯联邦, Vologda, 160000
A. Naimov
Vologda State University
编辑信件的主要联系方式.
Email: nan67@rambler.ru
俄罗斯联邦, Vologda, 160000
A. Sattorov
Khujand State University
编辑信件的主要联系方式.
Email: stahhs@rambler.ru
塔吉克斯坦, Khujand, 735700
补充文件
