Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.

Sobre autores

A. Kruk

Faculty of Mathematics and Mechanics

Email: vreitmann@aol.com
Rússia, Peterhof, 198504

A. Malykh

Faculty of Mathematics and Mechanics

Email: vreitmann@aol.com
Rússia, Peterhof, 198504

V. Reitmann

Faculty of Mathematics and Mechanics

Autor responsável pela correspondência
Email: vreitmann@aol.com
Rússia, Peterhof, 198504

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017