Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.

作者简介

A. Kruk

Faculty of Mathematics and Mechanics

Email: vreitmann@aol.com
俄罗斯联邦, Peterhof, 198504

A. Malykh

Faculty of Mathematics and Mechanics

Email: vreitmann@aol.com
俄罗斯联邦, Peterhof, 198504

V. Reitmann

Faculty of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: vreitmann@aol.com
俄罗斯联邦, Peterhof, 198504

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017