Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold
- Autores: Kruk A.V.1, Malykh A.E.1, Reitmann V.1
-
Afiliações:
- Faculty of Mathematics and Mechanics
- Edição: Volume 53, Nº 13 (2017)
- Páginas: 1715-1733
- Seção: Control Theory
- URL: https://journals.rcsi.science/0012-2661/article/view/154658
- DOI: https://doi.org/10.1134/S0012266117130031
- ID: 154658
Citar
Resumo
We prove a generalization of the well-known Douady–Oesterlé theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.
Sobre autores
A. Kruk
Faculty of Mathematics and Mechanics
Email: vreitmann@aol.com
Rússia, Peterhof, 198504
A. Malykh
Faculty of Mathematics and Mechanics
Email: vreitmann@aol.com
Rússia, Peterhof, 198504
V. Reitmann
Faculty of Mathematics and Mechanics
Autor responsável pela correspondência
Email: vreitmann@aol.com
Rússia, Peterhof, 198504
Arquivos suplementares
