The Prediction of the Dst-Index Based on Machine Learning Methods


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper investigates the possibility of predicting the time series of the geomagnetic index Dst. The prediction is based on parameters of the solar wind and interplanetary magnetic field measured at Lagrange point L1 within the Advanced Composition Explorer (ACE) spacecraft experiment using machine learning methods—artificial neural networks: classical perceptrons, recurrent networks of long short-term memory (LSTM), and committees of predictive models. Ultimately, the best results have been obtained using heterogeneous committees based on neural networks of both types.

Sobre autores

A. Efitorov

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Autor responsável pela correspondência
Email: a.efitorov@sinp.msu.ru
Rússia, Moscow, 119992

I. Myagkova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992

V. Shirokii

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992

S. Dolenko

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Autor responsável pela correspondência
Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018