The Prediction of the Dst-Index Based on Machine Learning Methods
- Autores: Efitorov A.O.1, Myagkova I.N.1, Shirokii V.R.1, Dolenko S.A.1
-
Afiliações:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Edição: Volume 56, Nº 6 (2018)
- Páginas: 434-441
- Seção: Article
- URL: https://journals.rcsi.science/0010-9525/article/view/153467
- DOI: https://doi.org/10.1134/S0010952518060035
- ID: 153467
Citar
Resumo
This paper investigates the possibility of predicting the time series of the geomagnetic index Dst. The prediction is based on parameters of the solar wind and interplanetary magnetic field measured at Lagrange point L1 within the Advanced Composition Explorer (ACE) spacecraft experiment using machine learning methods—artificial neural networks: classical perceptrons, recurrent networks of long short-term memory (LSTM), and committees of predictive models. Ultimately, the best results have been obtained using heterogeneous committees based on neural networks of both types.
Sobre autores
A. Efitorov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Autor responsável pela correspondência
Email: a.efitorov@sinp.msu.ru
Rússia, Moscow, 119992
I. Myagkova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992
V. Shirokii
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992
S. Dolenko
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Autor responsável pela correspondência
Email: dolenko@srd.sinp.msu.ru
Rússia, Moscow, 119992
Arquivos suplementares
