The Prediction of the Dst-Index Based on Machine Learning Methods
- Авторлар: Efitorov A.O.1, Myagkova I.N.1, Shirokii V.R.1, Dolenko S.A.1
-
Мекемелер:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Шығарылым: Том 56, № 6 (2018)
- Беттер: 434-441
- Бөлім: Article
- URL: https://journals.rcsi.science/0010-9525/article/view/153467
- DOI: https://doi.org/10.1134/S0010952518060035
- ID: 153467
Дәйексөз келтіру
Аннотация
This paper investigates the possibility of predicting the time series of the geomagnetic index Dst. The prediction is based on parameters of the solar wind and interplanetary magnetic field measured at Lagrange point L1 within the Advanced Composition Explorer (ACE) spacecraft experiment using machine learning methods—artificial neural networks: classical perceptrons, recurrent networks of long short-term memory (LSTM), and committees of predictive models. Ultimately, the best results have been obtained using heterogeneous committees based on neural networks of both types.
Авторлар туралы
A. Efitorov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Хат алмасуға жауапты Автор.
Email: a.efitorov@sinp.msu.ru
Ресей, Moscow, 119992
I. Myagkova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119992
V. Shirokii
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119992
S. Dolenko
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Хат алмасуға жауапты Автор.
Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119992
Қосымша файлдар
