开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 54, 编号 2 (2016)

Article

Analysis of the effect of various disturbing factors on high-precision forecasts of spacecraft orbits

Markov Y., Mikhailov M., Perepelkin V., Pochukaev V., Rozhkov S., Semenov A.

摘要

The necessity of taking many force components disturbing spacecraft (SC) orbits into account is demonstrated for the example of forecasts of GLONASS ephemerides. The disturbances of SCs in high-earth orbits (HEO) and low-earth orbits (LEO) are systematized, and the degree of their effect on SC motion is estimated. Disturbance models are developed that provide essential increases of the accuracy of one-day forecasts of GLONASS and GPS ephemerides. Modeling results are presented that allow, depending on the required accuracy of SC orbit forecasts, the determination of the necessary list of disturbances included in the model.

Cosmic Research. 2016;54(2):155-163
pages 155-163 views

Study and comparison of the parameters of five hot flow anomalies at a bow shock front

Shestakov A., Vaisberg O.

摘要

Five hot flow anomalies (HFA) recorded by the Tail Probe of the INTERBALL satellite in 1996 are analyzed in present work. For the five chosen events the authors determined the characteristics of current sheets whose interaction with the bow shock front led to formation of an HFA, as well as the directions of external electric fields and the directions of motion of these HFAs over a shock front. The analysis of plasma convection in an HFA body is carried out; the average velocities of plasma motion in the HFA are determined in a coordinate system linked with the normal to a current layer and with the normal to the bow shock. According to the character of plasma convection in an HFA body, these five events may be divided into two types, which also differ in the direction of the motion over the front of the bow shock. In the first-type HFAs, the convection of plasma has a component directed from the intermediate region confirming its identification as a source of energy for the formation of an HFA. In the second-type HFAs, plasma motion from the intermediate region in leading and trailing parts is less expressed. This fact, as well as the great variation of peculiar velocities in the body of anomalies, allowed the assumption that second-type anomalies are nonstationary. Evidence is presented that the anomalies considered in the paper are bordered with shocks formed in solar wind passing a large-scale, decelerated body of heated plasma.

Cosmic Research. 2016;54(2):77-95
pages 77-95 views

The solution of a model problem of the atmospheric entry of a small meteoroid

Zalogin G., Kusov A.

摘要

Direct simulation Monte Carlo modeling (DSMC) is used to solve the problem of the entry into the Earth’s atmosphere of a small meteoroid. The main aspects of the physical theory of meteors, such as mass loss (ablation) and effects of aerodynamic and thermal shielding, are considered based on the numerical solution of the model problem of the atmospheric entry of an iron meteoroid. The DSMC makes it possible to obtain insight into the structure of the disturbed area around the meteoroid (coma) and trace its evolution depending on entry velocity and height (Knudsen number) in a transitional flow regime where calculation methods used for free molecular and continuum regimes are inapplicable.

Cosmic Research. 2016;54(2):96-104
pages 96-104 views

Optical effects of the operation of the onboard engine of the Progress M-17M spacecraft at thermospheric heights

Mikhalev A., Khakhinov V., Beletskii A., Lebedev V.

摘要

This paper presents the results of optical observations in the active space experiment “Radar-Progress” on April 17, 2013, after switching on the approach-correction engine of the Progress M-17M cargo spacecraft at thermospheric heights (412 km), are presented in this paper. During engine operation, a region of enhanced emission intensity has been recorded. It was presumably related to the scatter of twilight solar emission at the engine exhausts in the cargo spacecraft orbit and, probably to the occurrence of an additional emission in the atomic oxygen line [OI] 630 nm. The maximum observed dimensions of the emission region were ~350 and ~250 km along the orbit and across it, respectively. The velocity of the expansion of the emission region at the first moments after the initiation of engine operation was ~7 and ~3.5 km/s along the orbit and across it, respectively. The maximum intensity of the disturbed region is estimated to be a value equivalent to ~40–60 R within the spectral band of 2 nm. No optical manifestation, which would exceed the natural variations in brightness of the night airglow and which would be related to possible large-scale modification of the ionosphere, was detected in the natural emission lines [O] 557.7 and 630.0 nm in a zone remote from the place of injection of engine exhausts.

Cosmic Research. 2016;54(2):105-110
pages 105-110 views

Evaluation of the spectrometric and dose characteristics of neutron fields inside the Russian segment of the ISS by fission detectors

Shurshakov V., Vorob’ev I., Nikolaev V., Lyagushin V., Akatov Y., Kushin V.

摘要

The results of measuring the dose and the energy spectrum of neutrons inside the Russian segment of the International Space Station (ISS) from March 21 until November 10, 2002 are presented. Statistically reliable results of measurement are obtained by using thorium- and uranium-based fission detectors with cadmium and boron filters. The kits of the detectors with filters have been arranged in three compartments within assembled passive detectors in the BRADOS space experiment. The ambient dose rate H* = 139 μSv day and an energy spectrum of neutrons in the range of 10–2–104 MeV is obtained as average for the ISS compartments and is compared with the measurements carried out inside the compartments of the MIR space station. Recommendations on how to improve the procedure for using the fission detectors to measure the characteristics of neutron fields inside the compartments of space stations are formulated.

Cosmic Research. 2016;54(2):111-117
pages 111-117 views

Theoretical and experimental study of a method for the protection of spacecraft from high–speed particles

Gerasimov A., Dobritsa D., Pashkov S., Khristenko Y.

摘要

In this paper, we perform numerical simulation and experimental determination of the limiting resistance of the spacecraft design elements used when developing anti-meteorite protection of spacecraft as well as protection against space debris. One possible way to increase the efficiency of protective shields and satisfy the requirements of the mass characteristics of the latter is the use of mesh barriers.

Cosmic Research. 2016;54(2):118-126
pages 118-126 views

On Saturn’s rotation relative to a center of mass under the action of the gravitational moments of the Sun and Jupiter

Krasilnikov P., Amelin R.

摘要

Saturn’s rotation relative to a center of mass is considered within an elliptic restricted three-body problem. It is assumed that Saturn is a solid under the action of gravity of the Sun and Jupiter. The motions of Saturn and Jupiter are considered elliptic with small eccentricities eS and eJ, respectively; the mean motion of Jupiter nJ is also small. We obtain the averaged Hamiltonian function for a small parameter of ε = nJ and integrals of evolution equations. The main effects of the influence of Jupiter on Saturn’s rotation are described: (α) the evolution of the constant parameters of regular precession for the angular momentum vector I2; (β) the occurrence of new libration zones of oscillations I2 near the plane of the celestial equator parallel to the plane of the Jupiter’s orbit; (γ) the occurrence of additional unstable equilibria of vector I2 at the points of the north and south poles of the celestial sphere and, as a result, the existence of homoclinic trajectories; and (δ) the existence of periodic trajectories with arbitrarily large periods near the homoclinic trajectory. It is shown that the effects of (β), (γ), and (δ) are caused by the eccentricity e of the Jupiter’s orbit and are practically independent of Jupiter’s mass (within satellite approximation).

Cosmic Research. 2016;54(2):127-133
pages 127-133 views

Choice of high-apogee AES orbits on the basis of the qualitative methods of the theory of perturbations and situational analysis. Part I. Situational studies based on orbital tori

Prokhorenko V.

摘要

The paper discusses the problems of the choice of high-apogee orbits of artificial Earth satellites (AES), proceeding from the tasks of space experiments aimed at studying near-earth space and taking into account the features of the orbital evolution and ballistic lifetime. The suggested methods of the choice of orbits consist of two components. The first is based on the use of mathematical models of studied regions of near-earth space and various techniques of situation analysis, among which the annual and daily orbital tori developed by the author about 35 years ago are key. The second component is based on qualitative methods of the theory of perturbations of high-apogee AES orbits developed by M.L. Lidov more than 50 years ago.

Cosmic Research. 2016;54(2):134-154
pages 134-154 views

On the stability of stationary motions of a system of coaxial bodies

Morozov V., Mikhailov D., Kalenova V.

摘要

We consider the stability of stationary motions of a model of a spacecraft as a system of coaxial bodies with small asymmetry caused by the shift of the axes of dynamic symmetry of bodies relative to the axis of rotation. We determine the stationary motions of the system; their stability is studied with respect to both the projections of angular velocity and the position of the axis of rotation. The sufficient conditions for the stability of these stationary motions are obtained by constructing a Lyapunov function, and the necessary conditions are obtained by analyzing the corresponding linearized equations of perturbed motion.

Cosmic Research. 2016;54(2):164-169
pages 164-169 views