


Vol 54, No 4 (2016)
- Year: 2016
- Articles: 9
- URL: https://journals.rcsi.science/0010-9525/issue/view/9171
Article
Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: Description of the experiment
Abstract
The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth’s atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.



Ionization losses of the Earth’s radiation belt protons according to the radial diffusion theory
Abstract
Using modern models of the plasmasphere and exosphere, radial profiles of the rates of ionization losses of protons with μ = 0.3–10 keV/nT (μ is the first adiabatic invariant) of the Earth’s radiation belts (ERBs) have been constructed. To calculate Coulomb losses of protons, we used the ISEE-1 satellite data at L = 3–9 and CRRES satellite data at L ≤ 3 (L is the McIlwain parameter). The relation of contributions of Coulomb losses and charge exchange in the rate of ionization losses of protons has been considered. We have discovered the effect of subtracting Coulomb losses from charge exchange of ERB protons for small μ and L, which can imitate a local particle source. It has been demonstrated that, with decreasing L, the rate of ionization losses of ERB protons decreases as a whole. The radial dependence of this rate only has a negative gradient in the narrow range (ΔL ~ 0.5) in the region of the plasmapause and only for protons with μ > 1.2 keV/nT.



Study of the mesosphere using wide-field twilight polarization measurements: Early results beyond the polar circle
Abstract
This paper discusses the results of early measurements of temperature and dust in the mesosphere on the basis of wide-field twilight sky polarimetry, which began in 2015 in Apatity (North of Russia, 67.6° N, 33.4° E) using the original entire-sky camera. These measurements have been performed for the first time beyond the Polar Circle in the winter and early spring period. The general polarization properties of the twilight sky and the procedure for identifying single scattering are described. The key results of the study include the Boltzmann temperature values at altitudes higher than 70 km and the conclusion on a weak effect of dust on scattering properties of the mesosphere during this period.



Time delays in the nonthermal radiation of solar flares according to observations of the CORONAS-F satellite
Abstract
In 2001–2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.



Spectral analysis of ionospheric disturbances in the phase delay and radio signal amplitude at limb paths according to the COSMIC data in periods of solar activity
Abstract
Based on more than 4500 sessions of radio transillumination of Earth’s atmosphere along the satellite–atmosphere–satellite path obtained in the COSMIC experiment, the distribution along latitude and over local time of the spatial spectra of variations in the ionospheric phase delay and signal amplitude has been analyzed. The spatial spectra have been calculated for two height ranges, i.e., 60–80 and 80–100 km. In the phase signal spectrum within the height range 80–100 km, the second maximum in the vicinity of a frequency of 7–8 rad/km is clearly seen. Its diurnal and latitudinal behavior and its decrease towards high latitudes in both hemispheres can also be seen. In the height range of 60–80 km, this maximum is hardly observed. Although solar flares can lead to substantial local changes in the electron concentration, no substantial difference in the behavior of the spectral densities of the amplitude and phase delay at long limb paths was observed within these two height ranges on days of active and quiet sun. The latter fact makes it possible to develop a united algorithm of optimal ionospheric correction of the radio occultation data independent of solar activity.



Rotational motion of Foton M-4
Abstract
The actual controlled rotational motion of the Foton M-4 satellite is reconstructed for the mode of single-axis solar orientation. The reconstruction was carried out using data of onboard measurements of vectors of angular velocity and the strength of the Earth’s magnetic field. The reconstruction method is based on the reconstruction of the kinematic equations of the rotational motion of a solid body. According to the method, measurement data of both types collected at a certain time interval are processed together. Measurements of the angular velocity are interpolated by piecewise-linear functions, which are substituted in kinematic differential equations for a quaternion that defines the transition from the satellite instrument coordinate system to the inertial coordinate system. The obtained equations represent the kinematic model of the satellite rotational motion. A solution of these equations that approximates the actual motion is derived from the condition of the best (in the sense of the least squares method) match between the measurement data of the strength vector of the Earth’s magnetic field and its calculated values. The described method makes it possible to reconstruct the actual rotational satellite motion using one solution of kinematic equations over time intervals longer than 10 h. The found reconstructions have been used to calculate the residual microaccelerations.



Designing nonuniform satellite systems for continuous global coverage using equatorial and polar circular orbits
Abstract
We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.



A vector method for synthesis of orbits and the structure of satellite constellations for multiswath periodic coverage of the Earth
Abstract
Single satellites and multisatellite constellations for the periodic coverage of the Earth are considered. The main feature is the use of several cameras with different swath widths. A vector method is proposed which makes it possible to find orbits minimizing the periodicities of coverage of a given area of Earth uniformly for all swaths. Their number is not limited, but the relative dimensions should satisfy the Fibonacci series or some new numerical sequences. The results apply to constellations of any number of satellites. Formulas were derived for calculating their structure, i.e., relative position in the constellation. Examples of orbits and the structure of constellations for the Earth’s multiswath coverage are presented.



Theory of physical libration of the Moon caused by a liquid core: Cassini’s motion
Abstract
This is the first part of a study to develop a modern theory of physical libration of the Moon caused by a liquid core. We use a special approach to studying Moon’s rotation relying on Poincaré’s planetary model and special forms of equations of motion in Andoyer and Poincaré variables. We construct expansions of the force function of the problem (the second harmonic of the selenopotential) in Andoyer and Poincaré variables for a high-precision description of disturbed orbital motion of the Moon. We investigate the main regularities in lunar rotational motion taken as a body with a solid nonspherical mantle and an ellipsoidal liquid core. The motion of the ideal liquid of the core is simple according to Poincaré. The Cassini laws can be dinamically interpreted for the motion of a synchronous satellite with a liquid core. The Cassini angle (the inclination of the rotation axis relative to the normal to the ecliptic plane) determined by us is very consistent with its determinations from laser observations.


