Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 52, № 6 (2016)

Article

Initiation of multifuel mixtures with bifurcation structures

Vasil’ev A., Vasiliev V.

Аннотация

The theory of a strong explosion is used as a basis for the development of an experimental technique for determining the source energy that ensures initiation of the combustible mixture. The technique is tested in experiments aimed at determining the critical energies of spherical detonation initiation E*3 with the use of an electric discharge for a stoichiometric acetylene–oxygen mixture and also for two-fuel mixtures (acetylene–nitrous oxide–oxygen) possessing bifurcation properties of cellular structures. The critical energy E*3 for the stoichiometric two-fuel mixture in terms of both fuels with a bifurcation structure is several-fold lower than the value of E*3 for the monofuel mixture whose cell size at a given pressure is determined by the large scale of bifurcation cells. This result testifies that the value of E*3 decreases with increasing number of “hot points,” which are numerous regions of collisions of large-scale and small-scale transverse waves in the mixture with bifurcation properties.

Combustion, Explosion, and Shock Waves. 2016;52(6):621-630
pages 621-630 views

Analysis of the mechanisms of ignition and combustion of i-C8H18–H2 and n-C10H22–H2 fuel blends in air

Titova N., Torokhov S., Favorskii O., Starik A.

Аннотация

The processes of ignition and combustion of i-C8H18–H2 and n-C10H22–H2 fuel blends in air are analyzed numerically. It is demonstrated that addition of hydrogen both to normal alkane (n-C10H22) and to alkane with a branched structure (i-C8H18) leads to an increase in the ignition delay time τind if the initial temperature of the mixture T0 is lower than a certain value Tl and, vice versa, to a decrease in τind at T0 > Tl. The greater the fraction of hydrogen in the mixture, the greater the change in τind. At sufficiently high temperatures (T0 > Th), addition of a small amount of alkane (≈2–10%) to hydrogen reduces the ignition delay time. The value of Tl depends on the pressure of the fuel–air mixture and, to a smaller extent, on the n-alkane type. The value of Th also depends on the fraction of alkane in the fuel blend. If the initial pressure is sufficiently high (10 atm and more), addition of a small amount of i-C8H18 or n-C10H22 to the hydrogen–air mixture reduces the value of τind for all values of T0. These features are caused by intense interaction of alkane and hydrogen oxidation kinetics. It is demonstrated that fuel blends consisting of hydrogen and n-C10H22 (i-C8H18) have a higher velocity of the laminar flame and wider limits of stable combustion than the hydrocarbons themselves. Nevertheless, a noticeable increase in the laminar flame velocity is observed only for the molar fraction of hydrogen in the fuel blend greater than 50%. In this case, it becomes possible to ensure stable combustion with a smaller fraction of NO in combustion products.

Combustion, Explosion, and Shock Waves. 2016;52(6):631-642
pages 631-642 views

Chemical conversion of SO2 in low-temperature and low-pressure oxyhydrogen flames. 1. Kinetic analysis of the process

Mantashyan A., Makaryan E., Arutyunyan A., Gevorgyan G.

Аннотация

The chemical conversion of SO2 to elemental sulfur in the chain oxidation of hydrogen in a low-temperature flame has been studied. The possible elementary reactions involving atoms and free radicals that may be responsible for the chemical conversion of SO2 with the formation of sulfur in the conjugate radical chain process are discussed on the basis of thermodynamic and kinetic characteristics.

Combustion, Explosion, and Shock Waves. 2016;52(6):643-650
pages 643-650 views

Chemical conversion of SO2 in low-temperature and low-pressure oxyhydrogen flames. 2. Mechanism of formation of elemental sulfur

Mantashyan A., Makaryan E., Arutyunyan A., Gevorgyan G.

Аннотация

Kinetic analysis of the mechanism of chemical conversion of SO2 in the conjugate radical chain process in low-temperature and low-pressure oxyhydrogen flames has been performed. The set of possible elementary reactions is considered, and the main pathways of SO2 conversion to elemental sulfur are identified.

Combustion, Explosion, and Shock Waves. 2016;52(6):651-658
pages 651-658 views

Structure and phase formation in the Ti–Al–Nb system in the thermal explosion mode

Busurina M., Umarov L., Kovalev I., Sachkova N., Busurin S., Vadchenko S., Sychev A.

Аннотация

This paper presents the results of the structure and phase formation in the Ti/Nb/2Al, Ti/Nb/2.5Al and Ti/Nb/3Al systems in the thermal explosion mode of self-propagating hightemperature synthesis. The morphology, phase composition, microstructure, and physical properties have been studied. It has been found that compounds with the highest content of aluminum have the most homogeneous composition and the lowest porosity. The main phase of the synthesis product is a phase based a solid solution of Nb in γ-TiAl.

Combustion, Explosion, and Shock Waves. 2016;52(6):659-664
pages 659-664 views

Burning of the Ti + xC (1 > x > 0.5) powder and granulated mixtures

Seplyarskii B., Kochetkov R., Vadchenko S.

Аннотация

This paper describes the experiments on the burning of the Ti + 0.5C, Ti + 0.75C, and Ti + C powder and granulated mixtures. Despite the fact that there is no convective heat transfer and the contact area between the particles is small, the linear and mass burning rates of granulated compositions happened to be several times greater than in the case of powder mixtures of the same composition. The obtained experimental and computational values of the adiabatic combustion temperature were used to estimate the contribution of the radiant and conductive heat transfer in the combustion wave propagation along the granulated mixtures. The experiments with compacted samples showed that the high burning rate of the granulated mixtures is due to great velocity of the combustion wave propagation along the granule rather than the specific features of the original reagents.

Combustion, Explosion, and Shock Waves. 2016;52(6):665-672
pages 665-672 views

Relationship between the dust flame propagation velocity and the combustion mode of fuel particles

Poletaev N.

Аннотация

A possibility of determining the regime of combustion of individual fuel particles on the basis of the dependence of the flame velocity on the fuel and oxidizer concentrations is considered by an example of a dust flame of microsized metal particles with diameters d10 < 15 μm and particle concentrations from ≈1010 to 1011 m−3 in oxygen-containing media at atmospheric pressure. The combustion mode (kinetic or diffusion) is responsible for the qualitative difference in the character of the normal velocity of the flame as a function of the basic parameters of the gas suspension. The analysis of such experimental dependences for fuel-rich mixtures shows that combustion of zirconium particles (d10 = 4 μm) in a laminar dust flame is controlled by oxidizer diffusion toward the particle surface, whereas combustion of iron particles of a similar size is controlled by kinetics of heterogeneous reactions. For aluminum particles with d10 = 5–15 μm, there are no clearly expressed features of either kinetic or diffusion mode of combustion. To obtain more information about the processes responsible for combustion of fine aluminum particles, the flame velocity is studied as a function of the particle size and initial temperature of the gas suspension. It is demonstrated that aluminum particles under the experimental conditions considered in this study burn in the transitional mode.

Combustion, Explosion, and Shock Waves. 2016;52(6):673-682
pages 673-682 views

Generation of hydrodynamic instability in the gasification region of propellant

Sabdenov K.

Аннотация

This paper presents the new way of the occurrence of “natural” turbulence in the Gusachenko–Zarko mechanism of negative erosion effect during the propellant burning. It is shown that the propellant gasification region can generate hydrodynamic instability if its burning rate at a constant temperature depends on the pressure. The hydrodynamic instability of the propellant combustion that decompose according to the solid phase → liquid phase → gas and solid phase → gas scheme occurs under quite different conditions. The gasification region in propellants of the first type is more inclined to instability generation than that in propellants of the second type. The hydrodynamic instability occurs if the critical value of the Reynolds number, which depends on the properties of the propellant and environmental conditions, is exceeded.

Combustion, Explosion, and Shock Waves. 2016;52(6):683-693
pages 683-693 views

Ignition of a metallized composite solid propellant by a group of hot particles

Glushkov D., Kuznetsov G., Strizhak P.

Аннотация

The solid-state ignition of a metallized composite propellant (ammonium perchlorate + 14% butyl rubber +5% aluminum powder + 6% plasticizer) under local heating by several sources of limited power capacity (dimensions of the hot particle xp = 4 mm and yp = 2 mm) was studied by mathematical modeling. For the temperature of the heated steel particles and the distance between them varied in the ranges 700 < Tp < 1500 K and 0.1xp < Δx < 1.5xp, respectively, the values of Tp and Δx were determined for which the ignition delay corresponds to the initiation of combustion of the composite propellant by a single particle, by a plate at a constant temperature or by several particles. In the region of low initial temperatures of the local sources (Tp < 1100 K), the limiting values Δx → 0.1xp and Δx > 1.5xp, were identified for which the characteristics and mechanism of ignition of the propellant by a group of heated particles can be studied using the “plate–propellant–gas” model and the “single particle–propellant–gas” model, respectively. Decreasing the distance Δx at Tp < 1100 K decreases the induction period to 50% and reduces the minimum initial temperature of the source required to initiate propellant combustion from 830 to 700 K. At Tp > 1100 K, the ignition of the metallized composite solid propellant by a single or several particles can be studied using relatively simple one-dimensional models of condensed material ignition by a plate at constant temperature. The variation in the ignition delay in this case is less than 5%.

Combustion, Explosion, and Shock Waves. 2016;52(6):694-702
pages 694-702 views

Detonation burning of anthracite and lignite particles in a flow-type radial combustor

Bykovskii F., Zhdan S., Vedernikov E., Zholobov Y.

Аннотация

Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius) cross-sectional area are studied. Ground coal with a particle size of 1–12 μm is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas is added in the ratio CO/H2 = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at CO/H2 = 1/3, 1/2, and 1/1, respectively. The structure of detonation waves and the flow in their vicinity are not principally different from those observed previously for long-flame bituminous coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal–air mixtures.

Combustion, Explosion, and Shock Waves. 2016;52(6):703-712
pages 703-712 views

Laser initiation of PETN-based composites with additives of ultrafine aluminium particles

Aduev B., Nurmukhametov D., Zvekov A., Nikitin A., Kalenskii A.

Аннотация

This paper describes the study on the dependence of the critical energy density of the explosive decomposition of PETN on the mass concentration of the additives of ultrafine Al particles (100–120 nm) in the range of 0.025–1% under the influence of the first and second harmonics of a neodymium laser (12 ns, 1064 and 532 nm). It is shown that the critical energy of the explosion initiation by the first and second harmonics of the laser radiation reaches a minimum value at the same absorption rates, but different concentrations of additives. The photoacoustic method is used to show that, as the laser energy radiation is absorbed, the pressure amplitude in the heated layer reaches a maximum value when the concentration of additives corresponds to the minimum value of the critical energy density.

Combustion, Explosion, and Shock Waves. 2016;52(6):713-718
pages 713-718 views

Experimental study and numerical simulation of the corner turning of TATB based and CL-20 based polymer bonded explosives

Guo X., Cao W., Duan Y., Han Y., Ran J., Lu X.

Аннотация

In order to study the corner turning performance of detonation waves for TATB (1,3,5-triamino-2,4,6-trinitrobenzene) based and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane) based polymer bonded explosives (PBXs with PBX-I, PBX-II, and PBX-III modifications), mushroom tests are used to obtain the first breakout angles, failure angles, and delay times with initiating diameters of 10 and 15 mm. The results show that these parameters of PBX-I increase with an increase in the initiating diameter. The first breakout angles and failure angles of PBX-II and PBX-III are 90◦ for the initiating diameter of 10 mm, while these angles for PBX-I are 22.7 and 31.9◦ for the same initiating diameter, which implies that CL-20 based explosives have excellent corner turning performance, even with 13.5 wt.% aluminum powders added to PBX-III. Then, two-dimensional numerical simulations of PBX-I are performed by using the Lee–Tarver ignition and growth model. The computed results agree well with the measured results for all cases studied.

Combustion, Explosion, and Shock Waves. 2016;52(6):719-726
pages 719-726 views

Effect of the microstructure of ammonium nitrate granules on the detonability of composite propellants based on it

Viktorov S., Frantov A., Lapikov I., Andreev V., Starshinov A.

Аннотация

This paper presents the result of a study of the chemical composition, physicotechnical properties, and structure of various types of granulated ammonium nitrate (high-density, porous, and aerated) made in Russia and abroad. It is shown that thermal treatment of high-density ammonium nitrate granules (Russian Standard (GOST) No. 2-2013) leads to changes in the crystal structure (porization) that increase the retention capacity with respect fuel oil. The detonation velocity of ammonium nitrate/fuel oil compositions based on aerated ammonium nitrate was measured.

Combustion, Explosion, and Shock Waves. 2016;52(6):727-731
pages 727-731 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».