Diffusion Model of Combustion of Large Boron Particles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Owing to its high mass and volume heats of combustion, boron is a promising component of solid propellants for air-breathing engines. Its application is limited by difficulties of organizing high-efficiency combustion. Experimental investigations of combustion of individual boron particles demonstrate a large number of unique features, which are not typical for other materials: variable ignition temperature, two stages of combustion, and drastic reduction of the burning rate for particles with sizes of several micrometers or smaller. Models that cover the entire range of temperatures, concentrations, and particle sizes are physically non-obvious, can be hardly reproduced, and do not provide the accuracy needed for solving practical problems. In this paper, we propose a simple diffusion model of combustion, which ensures an adequate description of combustion of boron particles 34.5 and 44.2 μm in size at temperatures above 2240 K.

关键词

作者简介

G. Ermolaev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

Email: zaitsev@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

A. Zaitsev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

编辑信件的主要联系方式.
Email: zaitsev@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018