Effect of collision dynamics of particles on the processes of shock wave dispersion


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on numerical simulations of two-dimensional unsteady flows of gas suspensions, the contribution of particle collisions to dispersion processes during interaction of shock waves with dense dust layers is analyzed. A model of collision dynamics of the two-phase medium based on molecular-kinetic approaches is used. The model is tested by using a problem of a shock wave passing along a dense layer of particles; the model predictions are found to agree well with available experimental data. The problem of interaction of a blast wave with a dense layer on a flat surface is also considered. A comparative analysis of various mechanisms acting on particles and the influence of the initial parameters of the layer on the particle lifting dynamics is performed. A weak effect of the Saffman force and inhomogeneity of the layer surface (waviness) and a significant effect of the Magnus force on dispersion of the layer directly behind the shock wave are demonstrated. In some cases, the contribution of the particle collision dynamics is found to be comparable with the Magnus force effect. Dust lifting due to the development of the Kelvin–Helmholtz instability occurs at late stages of the process.

作者简介

T. Khmel’

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

编辑信件的主要联系方式.
Email: khmel@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

A. Fedorov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

Email: khmel@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016