Impact on Diesel Fuel Crystallization of Alkyl-Methacrylate—Maleic-Anhydride—Methacrylamide Terpolymers Used as Cold-Flow Improvers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alkyl-methacrylate—maleic-anhydride—methacrylamide terpolymers (MR1—MA—MCNR2) are some of the most widely used cold flow improvers (CFIs). The crystallization behavior of diesel fuel with added MR1—MA—MCNR2 must be studied in order to develop more efficient terpolymers MC14—MA—MCNR2 was synthesized by the reaction of tetradecyl methacrylate (MC14), maleic anhydride (MA), and methacrylamide (MCNR2). The diesel fuel was filtered in situ at its cold filter plugging point (CFPP) in a manual CFPP apparatus before and after adding MC14—MA—MCNR2. The influence of the amount of polymer additive on the system fluidity was studied. The results showed that the solidification point first decreased to –34°C and then increased sharply to –17°C whereas the CFPP changed from –2 to –5°C and then remained steady as the amount of additive was increased. The crystallization behavior of the diesel fuel was studied using differential scanning calorimetry (DSC), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The system enthalpy at first decreased as CFI was added to the diesel fuel and then began to increase as the amount of additive was increased further, showing that the liquid—solid phase transition was delayed whereas the crystallization started at a lower temperature than that for the base diesel fuel. The XRD pattern of the CFI confirmed the presence of complex crystalline particles with long-range order. TEM showed that addition of CFIs to diesel fuels caused fine crystals to grow unevenly and bind to each other. The wax crystals had different sizes because of a shortage of crystallization centers and binding of the particles. The CFIs acted through a eutectic mechanism.

About the authors

Jilu Chen

School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai Institute of Technology

Email: bortum@mail.ru
China, Shanghai; Shanghai

Tianliang Li

School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai Institute of Technology

Email: bortum@mail.ru
China, Shanghai; Shanghai

Sheng Han

School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai Institute of Technology

Email: bortum@mail.ru
China, Shanghai; Shanghai


Copyright (c) 2017 Springer Science+Business Media, LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies