Modes of embryo development in angiosperms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The general ideas that determine the structure of the embryo are discussed. A comparative analysis of the classifications of the endospermogenesis and embryogenesis types has shown that the principles of their creation are similar. However, during the endosperm development, the process of separation of the types (cellular and helobial, the latter includes the nuclear endosperm) begins as early as after the second division, and during the formation of the embryo, only after the third division during the formation of the proembryo, i. e. the ontogenetic time of typing differs in both systems. Using these principles, we proposed an original classification of the embryo formation modes. It uses the concept of “megatypes of embryogenesis” and analyzes existing modes and systems of types of embryo development. The data on the Piperad-type have been revised, and a new Orchidad-type has been proposed for orchids, including 3 variations.

After the division of the zygote, patterns of clusters of future types of embryogenesis are outlined: transverse, inclined, irregular (features of the formation of the first and subsequent partitions during the formation of the early embryo), coenocytic (nuclear stage in the development of the early embryo). The main cluster is transverse, which is inherent in most flowering plants. It is accompanied by the formation of apical and basal cells, further divisions of which lead to the formation of two ways of development based on the T-shaped or linear tetrad of cells. In each way, the participation of derivatives of apical and basal cells is different, which leads to the emergence of autonomous types of embryogenesis — Asterad-type, Caryophyllad-type, Chenopodiad-type, Onagrad-type, Solanad-type. The oblique cluster of megatypes is characterized by inclined partitions during the formation of proembryo (Poad-type of embryogenesis), while the irregular cluster is characterized by a combination of longitudinal, oblique, and transverse partitions (Piperad-type of embryogenesis) or a variety of tetrad forms of proembryo and the lack of regularity in the division and fate of basal cell derivatives (Orchidad-type of embryogenesis). The coenocyte cluster is represented by Paeonad-type only.

Full Text

Restricted Access

About the authors

I. I. Shamrov

Herzen State Pedagogical University of Russia; Komarov Botanical Institute of Russian Academy of Sciences

Author for correspondence.
Email: shamrov52@mail.ru
Russian Federation, St. Petersburg; St. Petersburg

G. M. Anisimova

Komarov Botanical Institute of Russian Academy of Sciences

Email: galina0353@mail.ru
Russian Federation, St. Petersburg

References

  1. Ammirato P.V. 1999. Towards an integrated view of plant embryogenesis. — The Quarterly Rev. Biol. 75(4): 515–543.
  2. Andronova E.V. 2011. Lethal anomalies of the structure and development of the embryo in Dactylorhiza fuchsii (Orchidaceae). — Bot. Zhurn. 96(7): 858–863 (In Russ.).
  3. Andronova E.V. 1997. Embryogenesis in Orchidaceae. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 544–556 (In Russ.).
  4. Andronova E.V. 2006. Embryogenesis in Orchidaceae. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 355–363.
  5. Andronova E.V., Kovaleva A.A., Evdokimova E.E., Nazarov V.V., Semeonov A.V. 2020. Fruitаge and seed viability of Orchis purpurea (Orchidaceae) at the northeast limit of distribution. — Int. J. Pl. Rep. Biol. 12(1): 56–66. https://doi.org/10.14787/ijprb.2020 12.1
  6. Anisimova G.M. 1997. Onagrad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 510–512 (In Russ.).
  7. Anisimova G.M. 2006. Onagrad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 333–335.
  8. Armenta-Medina A., Gillmor C.S., Gao P. et al. 2020. Developmental and genomic architecture of plant embryogenesis: from model plant to crops. — Plant Commun. 2(1), Article 100136. https://doi.org/10.1016/j.xplc.2020.100136
  9. Barlow R.W. 1994. Rhythm, periodicy and polarity as bases for morphogenesis in plants. — Biol. Rev. 69: 475–525.
  10. Batygina T.B. 1974. Wheat embryology. Leningrad. 206 p. (In Russ.).
  11. Batygina T.B., Shamrov I.I., Titova G.E. 1993. Somatic embryogenesis in cereals (comparative embryological approach). — Abstr. XVth Int. Bot. Congr., August, 28 — September, 3. Yokohama, Japan. P. 564.
  12. Brukhin V., Gheyeselinck J., Gagliardini V., Genschik P., Grossniklaus U. 2005. The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. — Plant Cell. 17(10): 2723–2737.
  13. https://doi.org/10.1105/tpc.105.034975
  14. Brukhin V., Morozova N. 2011. Plant growth and development — basic knowledge and current views. — Math. Model. Nat. Phenom. 6(2): 1–53. https://doi.org/10.1051/mmnp/20116201
  15. Carano E. 1915. Richerche sull’embriogenesi delle Asteraceae. — Ann. Bot. (Rome). 13 (2): 251–301.
  16. Chen J., Lausser A., Dresselhaus T. 2014. Hormonal responses during early embryogenesis in maize. — Biochem. Soc. Trans. 42: 325–331.
  17. Chen H., Miao Y., Wang K., Bayer M. 2021. Zygotic embryogenesis in flowering plants. — Meth. Mol. Biol. 2288: P. 73–88. https://doi.org/10.1007/978-1-0716-1335-1_4
  18. Chiarugi A. 1925. Embryologia della Cistaceae. N.G. Bot. Ital. N.S. 32 (1): 223–314.
  19. Clements M.A. 1999. Embryology. — In: Genera Orchidacearum. General introduction, Apostasioideae, Cyripedioideae. Oxford. 1: 38–58.
  20. Costa L.M., Marshall E., Tesfaye M. et al. 2014. Flowering plants central cell-derived peptides regulate early embryo patterning in flowering plants. — Science. 344: 168–172.
  21. Czaplejewicz D., Kozieradzka-Kiszkurno M. 2013. Ultrastructural and cytochemical studies of the embryo suspensor of Sedum reflexum l. (Crassulaceae). — Acta Biol. Cracov. Ser. Bot. 55(2): 76–89. https://doi.org/10.2478/abcsb-2013-0028
  22. Di Fulvio T.E. 1983. Los “tipos”ˮ de endosperma y de haustorios ensdospérmicos. Su clasificación. — Kurtziana. 16(1–4): 7–31.
  23. Di Fulvio T.E. 1985. El sistema EODP en el ordenamiento de Tubiflorae y en la endospermogenesis nuclear. — Anal. Acad. Nac. Cj. Exact., Buenos Aires. 37(1–4): 111–119.
  24. Di Fulvio T.E., Cocucci A.E. 1986. La endospermogenesis nuclear y el sistema EODP. — Kurtziana. 18(1): 13–21.
  25. Doll N.M., Depege-Fargeix N., Rogowsky P.M., Widiez T. 2017. Signaling in early maize kernel development. — Mol. Plant. 10: 375–388.
  26. Foster A.S. 1949. Practical plant anatomy. New York. P. 1–155.
  27. Gajdaj Е., Matichin A., Gajdaj D., Makarova М. 2018. Caenorhabditis elegans as a model object for biomedical studies. — Laboratory Animals for Science. 4: 1–24. https://doi.org/10.29296/2618723X-2018-04-02
  28. Gilbert S.F. 2003. Developmental biology. Sunderland, Massachusetts. 850 p.
  29. Grossniklaus U. 2019. Plant development and evolution. Zurich. 642 p.
  30. Hanstein A. 1870. Die Entwicklung des Keimes der Monokotylen und Dykotylen. — Bot. Abhandl. an Gebiet der Morph. und Physiol. 1(1): 1–112.
  31. Harnvanichvech Y., Gorelova V., Sprakel J., Weijers D. 2021. The Arabidopsis embryo as a quantifiable model for studying pattern formation. — Quant. Plant Biol. 2, e3: 1–13. https://doi.org/10.1017/qpb.2021.3
  32. Hofmeister W. 1849. Die Entstehung des Embryo der Phanerogamen. Eine Reihe microscopischer Untersuchungen. Leipzig. 89 S.
  33. Ji Min S., Ling Y., Masaru O.-T., Tomokazu K. 2020. Cellular dynamics of double fertilization and early embryogenesis in flowering plants. — Plant and Soil Sci. Faculty Publications. 155. 32 p. https://uknowledge.uky.edu/pss_facpub/155
  34. Johansen D.A. 1950. Plant embryology. Waltham MA. 305 p.
  35. Johnson R.R. 2017. Embryogenesis. — In: Encyclopedia of applied plant sciences (second edition). 1: 490–496.
  36. Johri B.M., Ambegaokar K.B., Srivastava P.S. 1992. Comparative embryology of angiosperms. Berlin etc. Vol. 1, 2. 1221 p.
  37. Jűrgens G. 1995. Axis formation in plant embryogenesis: cues and clues. — Cell (Cambridge). 81: 467–470.
  38. Jürgens G., Mayer U. 1994. Arabidopsis. — In: Embryos. Colour atlas of development. London. P. 7–21.
  39. Kalinka A.T., Tomancak P. 2012. The evolution of early animal embryos: conservation or divergence? — Trends in Ecology and Evolution 20: 1–9. http://dx.doi.org/10.1016/j.tree.2012.03.007
  40. Kamelina O.P. 1997. Piperad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 508–510 (In Russ.).
  41. Kamelina O.P. 2006. Piperad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 332–333.
  42. Koval V.A. 2023. Reproductive biology of Coelogyne Lindl. (Orchidaceae Juss.) in culture in greenhouses. — Avtoref. kand. diss. Moscow. 21 p. (In Russ.).
  43. Krogan N.T., Marcos D., Weiner A.I., Berleth T. 2016.. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. — New Phytol. 212(1): 42–50. https://doi.org/10.1111/nph.14107
  44. Lau S., Slane D., Herud O., Kong J., Jürgens G. 2012. Early embryogenesis in flowering plants: setting up the basic body pattern. — Annu. Rev. Plant Biol. 63: 483–506.
  45. Laux T., Jűrgens G. 1994. Establishing the body plan of the Arabidopsis embryo. — Acta Bot. Neerl. 43(3): 247–260.
  46. Lee Y.I., Yeung E.C. 2010. The osmotic property and fluorescent tracer movement of developing orchid embryos of Phaius tankervilliae (Aiton) Bl. — Sex. Plant Reprod. 23: 337–341. https://doi.org/10.1007/s00497-010-0143-y
  47. Lee Y.-I., Yeung E.C., Lee N., Chung M.C. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. — Bot Stud. 49: 139–146.
  48. Liu C.M., Xu Z.H., Chua N.H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. — Plant Cell. 5: 621–630.
  49. Locascio A., Roig-Villanova I., Bernardi J., Varotto S. 2014. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. — In: Frontiers in Plant Science. 5(412): 1–22.
  50. Lyndon R.F. 1990. Plant development. London. 310 p.
  51. Mansfield S.G., Briarthy L.G. 1991. Early embryogenesis in Arabidopsis thalina. II. The developing embryo. — Canad. J. Bot. 69: 461–476.
  52. Mayer U., Torres Ruiz R.A., Berleth T. et al. 1991. Mutations affecting body organization in the Arabidopsis embryo. — Nature. 353: 402–407.
  53. Mayer U., Buttner G., Jürgens G. 1993. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. — Development. 117: 149–162.
  54. Meinke D.W. 1986. Embryo-lethal mutants and the study of plant embryo development. — Oxford Surv. Plant Mol. Biol. 3: 122–163.
  55. Meinke D.W. 1991a. Embryonic mutants of Arabidopsis thaliana. — Dev. Gen. 12: 382–392.
  56. Meinke D.W. 1991b. Perspectives of genetic analysis of plant embryogenesis. — Plant Cell. 3(9): 857–866.
  57. Natesh S., Rau M.A. 1984. The embryo. — In: Embryology of angiosperms. Berlin. P. 377–443.
  58. Nawaschin S.G. 1898a. New observations of fertilization in Fritillaria tenella и Lilium martagon. — In: Dnevnik X s’ezda russkich estestvoispytatelei I vrachei [Diary of X congress of russian naturalists and doctors]. Kiev. 6: 16–21 (In Russ.).
  59. Nawasсhin S. 1898b. Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. — Bull. Acad. Imp. Sci. St. Petersbourg. 9(4): 377–382.
  60. Padmanabhan D. 1996. Tracing the shoot apex in angiosperm embryos. — In: Advances in botany. New Delhi. P. 39–51.
  61. Periasamy K. 1977. A new approach to the classification of angiosperm embryos. — Proc. Indian Acad. Sci. 86(1): P. 1–12.
  62. Poddubnaya-Arnoldi V.A. 1976. Cytoembryology of the Angiosperms: principles and perspectives. Moscow. 507 p. (In Russ.).
  63. Pulak R. 2006. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. — Methods Mol. Biol. 351: 275–286.
  64. Raghavan V. 1997. Molecular embryology of flowering plants. Cambridge. 690 p. https://doi.org/10.1017/CBO978051157452
  65. Rudall P.J. 2007. Anatomy of flowering plants. An introduction to structure and development. Cambridge. 145 p.
  66. Sankara Rao K. 1996. Embryogenesis in flowering plants: recent approaches and prospects. — J. Biosci. 21(6): 827–841.
  67. Savina G.I., Poddubnaya-Arnoldi V.A. 1990. Orchidaceae family. — In: Comparative embryology of flowering plants. Butomaceae — Lemnaceae. Leningrad. P. 172–179 (In Russ).
  68. Schmidt E.D.L., Jong A.J. de, Vries S.C. de. 1994. Signal molecules involved in plant embryogenesis. — Plant Molec. Biol. 26: 1305–1313.
  69. Schnarf K. 1929. Embryologie der Angiospermen. Berlin. 689 S.
  70. Schnarf K. 1931. Vergleichende Embryologie der Angiospermen. Berlin: Gebrüder Borntraeger. 354 S.
  71. Schulz R., Jensen W.A. 1968. Capsella embryogenesis: the early embryo. — J. Ultrastr. Res. 22(5–6): 376–392.
  72. Shamrov I.I. 1996. Genealogical and dynamic approaches to embryo study. — Abstr. September, 12–14, Hamburg, Germaniy, Plant Embryogenesis Workshop. P. 26.
  73. Shamrov I.I. 1997a. Principles of classification of embryogenesis types. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 493–508 (In Russ.).
  74. Shamrov I.I. 1997b. Embryogeny. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 297–307 (In Russ.).
  75. Shamrov I.I. 1997c. Ovule and seed development in Paeonia lactiflora (Paeoniaceae). — Bot. Zhurn. 82 (6): 24–46 (In Russ.).
  76. Shamrov I.I. 2001. Ovule and seed morphogenesis in Listera ovata (Orchidaceae). — Bot. Zhurn. 86(1): 3–13 (In Russ.).
  77. Shamrov I.I. 2008. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
  78. Shamrov I.I. 2022a. Comparative embryology in plants and animals. St. Petersburg. 144 p.
  79. Shamrov I.I. 2022b. Endosperm development traits under a comparative analysis of endospermogenesis and embryogenesis in angiosperms. — Bot. Zhurn. 107(2): 3–27 (In Russ.). https://doi.org/10.31857/S0006813622020107
  80. Shamrov I.I. 2022c. Endosperm development traits in a comparative analysis of endospermogenesis and embryogenesis in angiosperms. — Doklady Biological Sciences. 506(6): 239–255. https://doi.org/10.1134/S0012496622050143/
  81. Shamrov I.I., Anisimova G.M. 1993. Peculiarities of reorganization of ovule into seed in Luzula pedemontana (Juncaceae). — Bot. Zhurn. 78(12): 24–44.
  82. Shamrov I.I., Anisimova G.M. 2003a. Stages of structural-functional reorganization during ovule and seed development. — Bot. Zhurn. 88(12): 37–61 (In Russ.).
  83. Shamrov I.I., Anisimova G.M. 2003b. Critical stages of ovule and seed development. — Acta Biol. Cracov. Ser. Bot. 45(1): 167–172.
  84. Shamrov I.I., Batygina T.B. 1984. Embryo and endosperm development in representatives of Ceratophyllaceae family. — Bot. Zhurn. 69(10): 1328–1335 (In Russ.).
  85. Shamrov I.I., Nikiticheva Z.I. 1992. Morphogenesis of ovule and seed in Gymnadenia conopsea (Orchidaceae): structural and histochemical investigation. — Bot. Zhurn. 77(4): 45–60 (In Russ.).
  86. Simpson M.G. 2010. Plant embryology. — In: Plant systematics. Amsterdam etc. P. 450–465.
  87. Singh H. 1978. Embryology of gymnosperms. Berlin — Stuttgart. 302 p.
  88. Souèges R. 1935. Exposes d’embryologie et de morphologie végétales. IV. La segmentation. Premier fascicule: I — Les fondaments. II — Les phenomenes internes. — Act. Sci. Industr. 266: 1–88.
  89. Souèges R. 1937. Exposes d’embryologie et de morphologie végétales. VII. Le lois du developpment. — Act. Sci. Industr. 521: 1–94.
  90. Souèges R. 1939. Exposes d’embryologie et de morphologie végétales. X. Embryogénie et classification. Deuxième fascicule. Essai d’un système embryogénique (Partie générale). Paris. 95 p.
  91. Srivastava L.M. 2003. Plant growth and development. Hormones and the environment. — Ann. Bot. 92(6): 846–846. https://doi.org/10.1093/aob/mcg209
  92. Suárez M.F., Bozhkov P.V. (ed.). 2008. Plant embryogenesis. Totowa, NJ 07512, USA. 184 p.
  93. Swamy B.G.L.1949. Embryological studies in the Orchidaceae. II. Embryology. — Amer. Midl. Nat. 41: 202–232. https://doi.org/10.2307/2422026
  94. Swamy B.G.L., Padmanabhan D. 1962. A reconnaissance of angiosperm embryogenesis. — J. Indian Bot. Soc. 41: 422–437.
  95. Teryokhin E.S. 1996. Seed and seed reproduction. St. Petersburg. 376 p. (In Russ.).
  96. Teryokhin E.S, Nikiticheva Z.I. 1981. Orobanchaceae family. Ontogenesis and phylogenesis. Leningrad. 228 p. (In Russ.).
  97. Titova G.E. 1997. Asterad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 512–516 (In Russ.).
  98. Titova G.E. 2006. Asterad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 335–337.
  99. Tokin B.P. 1987. General embryology. Moscow. 480 p. (In Russ.).
  100. Trenin V.V. 1988. Introduction into cytoembryology of conifers. Petrozhavodsk. 152 p. (In Russ.).
  101. Vallade J. 1989. Embryogenesis and research of fundamental morphogenetic processes. — In: Some aspects and actual orientations in plant embryology. Amies. P. 171–187.
  102. Veyret Y. 1965. Embryogènie comparée et blastogénie chez les Orchidaceae-Monandrae. — O.R.S.T.O.M. Paris. 106 p.
  103. Veyret Y. 1974. Development of the embryo and the young seedling stages of orchids. — The Orchids Scientific Studies. New York etc. P. 223–265.
  104. Wardlaw C.W. 1955. Embryogenesis in plants. London. 391 p.
  105. Yakovlev M.S. 1958. Principles of distinguishing of main embryonal types and their significance for the phylogeny of angiosperms. — Problems of Botany. 3: 168–195 (In Russ.).
  106. Yakovlev M.S. 1981. The glossary of main terms. — In: Comparative embryology of flowering plants. Winteraceae — Juglandaceae. Leningrad. P. 7–25 (In Russ.).
  107. Yamazaki T. 1982. Recognized types in early development of the embryo and the phylogenetic significance in the dicotyledons. — Acta Phytotax. Geobot. 33: 400–409.
  108. Yang C.-K., Lee Y.-I. 2014. The seed development of a mycoheterotrophic orchid, Cyrtosia javanica Blume. — Bot. Stud. 55, Article 44. https://doi.org/10.1186/s40529-014-0044-8
  109. Yeung E.C., Meinke D.W. 1993. Embryogenesis in angiosperms: development of the suspensor. — Plant Cell. 5: 1371–1381. https://doi.org/10.1105/tpc.5.10.1371
  110. Yudakova O.I., Shakina T.N., Kaybeleva E.I. 2018. Cytoembryologycal peculiarities of endosperm development in some apomictic Poa species (Poaceae). — Botanicheskii Zhurnal. 103(7): 908–918 (In Russ.). https://doi.org/10.7868/S0006813618070049
  111. Zhinkina N.A. 1997a. Solanad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 516–517 (In Russ.).
  112. Zhinkina N.A. 1997b. Chenopodiad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 517–518 (In Russ.).
  113. Zhinkina N.A. 1997c. Caryophyllad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 518–520 (In Russ.).
  114. Zhinkina N.A. 2006a. Solanad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 337–338.
  115. Zhinkina N.A. 2006b. Chenopodiad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 337–338.
  116. Zhinkina N.A. 2006c. Caryophyllad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 339–341.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Embryogenesis stages in Ceratophyllum demersum: 1–17 — early embryogenesis stages and embryo structure before organogenesis; 18–23 — organogenesis: cotyledon formation and epicotyle reorganization into embryo plumule. са — apical cell, сb — basal cell, сi — lower cell, icс — central cylinder initials, iec — root bark initials, ieр — epicotyle initials, l, l— upper and lower quadrants, m — middle cell, pсo — cotyledon, pl — embryo plumule. Scale bar, µm: 1–18 – 20; 19–23 – 100.

Download (372KB)
3. Fig. 2. Some stages of embryogenesis in Ceratophyllum demersum: 1 — stage of octants; 2 — globular embryo; 3 — embryo before organogenesis; 4 — initiation of cotyledon and epicotyle primordia. ieр — epicotyle initials, pсo — cotyledon. Scale bar, µm: 30.

Download (331KB)
4. Fig. 3. Embryogenesis stages in Luzula pedemontana: 1–13 — early embryogenesis stages and embryo structure before organogenesis, starch in cells is shown as granules, dextrines as dots; 14 — mature embryo. са — apical cell, сb — basal cell, сi — lower cell, co — root cap, h — hypophysial cell, icс — central cylinder initials, iec — root bark initials, l, l' — upper and lower quadrant-cells, m — middle cell, n, n'— derivates of middle cell, pсo — cotyledon, phy — hypocotyl, pvt — shoot apical meristem, q — quadrant-cells, s — suspensor. Scale bar, µm: 50.

Download (149KB)
5. Fig. 4. Embryogenesis stages in Gymnadenia conopsea: 1–11 — successive stages of embryo development: 1 — zygote, 2 — two-celled proembryo, 3 — T-shaped cell tetrad, 4 — quadrant stage, 5 — octant stage, 6–11 — embryoderm differentiation and formation of a long single-row suspensor; starch in cells is shown as granules, dextrines as dots. са — apical cell, сb — basal cell, сi — lower cell, h — hypophysial cell, hp — hypostase, l, l — upper and lower quadrants, m — middle cell, n e — nucellus epiderm, pl — placenta, ps — postament, s — suspensor. Scale bar, µm: 30.

Download (328KB)
6. Fig. 5. Embryogenesis stages in Listera ovata: 1–5 — development of the embryo surrounded by seed tissue: 1 — two-celled proembryo, 2 — T-shaped cell triad, 3 — quadrant stage, 4 — octant stage, 5 — mature seed, the basal cell of the embryo does not divide and forms a unicellular suspensor. cb, q — tiers of proembryo, em — embryo, en — endosperm, hp — hypostase. Scale bar, µm: 20.

Download (451KB)
7. Fig. 6. Possible modes of embryo development in angiosperms: 1 — embryogenesis megatypes: 2 — transverse, 3 — oblique, 4 — irregular, 5 — coenocytic, 6 — embryogenesis types, 7 —T-shaped cell tetrad, 8 — linear cell tetrad, 9, 10 — contribution of ca and cb cells in the construction of the embryo, 11, 12 — predominantly ca cell — Onagrad-type (11), Solanad-type (12), 13, 14 — both cells — Asterad-type (13), Chenopodiadtype (14), 15 — cb cell does not divide, Caryophyllad-type, 16 — predominantly oblique cell divisions — Poad-type, 17, 18 —irregular type: combination of longitudinal, oblique and transverse divisions (Piperad-type — 17), variety of tetrad forms of proembryo cells and lack of regularity in the division and fate of basal cell derivatives (Orchidad-type — 18), 19 — nuclear divisions in proembryo — Paeoniad-type. са — apical cell, сb — basal cell.

Download (208KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».