Modes of embryo development in angiosperms
- Authors: Shamrov I.I.1,2, Anisimova G.M.2
-
Affiliations:
- Herzen State Pedagogical University of Russia
- Komarov Botanical Institute of Russian Academy of Sciences
- Issue: Vol 110, No 1 (2025)
- Pages: 5-28
- Section: REVIEWS
- URL: https://journals.rcsi.science/0006-8136/article/view/286825
- DOI: https://doi.org/10.31857/S0006813625010015
- EDN: https://elibrary.ru/EMWKMZ
- ID: 286825
Cite item
Abstract
The general ideas that determine the structure of the embryo are discussed. A comparative analysis of the classifications of the endospermogenesis and embryogenesis types has shown that the principles of their creation are similar. However, during the endosperm development, the process of separation of the types (cellular and helobial, the latter includes the nuclear endosperm) begins as early as after the second division, and during the formation of the embryo, only after the third division during the formation of the proembryo, i. e. the ontogenetic time of typing differs in both systems. Using these principles, we proposed an original classification of the embryo formation modes. It uses the concept of “megatypes of embryogenesis” and analyzes existing modes and systems of types of embryo development. The data on the Piperad-type have been revised, and a new Orchidad-type has been proposed for orchids, including 3 variations.
After the division of the zygote, patterns of clusters of future types of embryogenesis are outlined: transverse, inclined, irregular (features of the formation of the first and subsequent partitions during the formation of the early embryo), coenocytic (nuclear stage in the development of the early embryo). The main cluster is transverse, which is inherent in most flowering plants. It is accompanied by the formation of apical and basal cells, further divisions of which lead to the formation of two ways of development based on the T-shaped or linear tetrad of cells. In each way, the participation of derivatives of apical and basal cells is different, which leads to the emergence of autonomous types of embryogenesis — Asterad-type, Caryophyllad-type, Chenopodiad-type, Onagrad-type, Solanad-type. The oblique cluster of megatypes is characterized by inclined partitions during the formation of proembryo (Poad-type of embryogenesis), while the irregular cluster is characterized by a combination of longitudinal, oblique, and transverse partitions (Piperad-type of embryogenesis) or a variety of tetrad forms of proembryo and the lack of regularity in the division and fate of basal cell derivatives (Orchidad-type of embryogenesis). The coenocyte cluster is represented by Paeonad-type only.
Keywords
Full Text

About the authors
I. I. Shamrov
Herzen State Pedagogical University of Russia; Komarov Botanical Institute of Russian Academy of Sciences
Author for correspondence.
Email: shamrov52@mail.ru
Russian Federation, St. Petersburg; St. Petersburg
G. M. Anisimova
Komarov Botanical Institute of Russian Academy of Sciences
Email: galina0353@mail.ru
Russian Federation, St. Petersburg
References
- Ammirato P.V. 1999. Towards an integrated view of plant embryogenesis. — The Quarterly Rev. Biol. 75(4): 515–543.
- Andronova E.V. 2011. Lethal anomalies of the structure and development of the embryo in Dactylorhiza fuchsii (Orchidaceae). — Bot. Zhurn. 96(7): 858–863 (In Russ.).
- Andronova E.V. 1997. Embryogenesis in Orchidaceae. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 544–556 (In Russ.).
- Andronova E.V. 2006. Embryogenesis in Orchidaceae. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 355–363.
- Andronova E.V., Kovaleva A.A., Evdokimova E.E., Nazarov V.V., Semeonov A.V. 2020. Fruitаge and seed viability of Orchis purpurea (Orchidaceae) at the northeast limit of distribution. — Int. J. Pl. Rep. Biol. 12(1): 56–66. https://doi.org/10.14787/ijprb.2020 12.1
- Anisimova G.M. 1997. Onagrad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 510–512 (In Russ.).
- Anisimova G.M. 2006. Onagrad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 333–335.
- Armenta-Medina A., Gillmor C.S., Gao P. et al. 2020. Developmental and genomic architecture of plant embryogenesis: from model plant to crops. — Plant Commun. 2(1), Article 100136. https://doi.org/10.1016/j.xplc.2020.100136
- Barlow R.W. 1994. Rhythm, periodicy and polarity as bases for morphogenesis in plants. — Biol. Rev. 69: 475–525.
- Batygina T.B. 1974. Wheat embryology. Leningrad. 206 p. (In Russ.).
- Batygina T.B., Shamrov I.I., Titova G.E. 1993. Somatic embryogenesis in cereals (comparative embryological approach). — Abstr. XVth Int. Bot. Congr., August, 28 — September, 3. Yokohama, Japan. P. 564.
- Brukhin V., Gheyeselinck J., Gagliardini V., Genschik P., Grossniklaus U. 2005. The RPN1 subunit of the 26S proteasome in Arabidopsis is essential for embryogenesis. — Plant Cell. 17(10): 2723–2737.
- https://doi.org/10.1105/tpc.105.034975
- Brukhin V., Morozova N. 2011. Plant growth and development — basic knowledge and current views. — Math. Model. Nat. Phenom. 6(2): 1–53. https://doi.org/10.1051/mmnp/20116201
- Carano E. 1915. Richerche sull’embriogenesi delle Asteraceae. — Ann. Bot. (Rome). 13 (2): 251–301.
- Chen J., Lausser A., Dresselhaus T. 2014. Hormonal responses during early embryogenesis in maize. — Biochem. Soc. Trans. 42: 325–331.
- Chen H., Miao Y., Wang K., Bayer M. 2021. Zygotic embryogenesis in flowering plants. — Meth. Mol. Biol. 2288: P. 73–88. https://doi.org/10.1007/978-1-0716-1335-1_4
- Chiarugi A. 1925. Embryologia della Cistaceae. N.G. Bot. Ital. N.S. 32 (1): 223–314.
- Clements M.A. 1999. Embryology. — In: Genera Orchidacearum. General introduction, Apostasioideae, Cyripedioideae. Oxford. 1: 38–58.
- Costa L.M., Marshall E., Tesfaye M. et al. 2014. Flowering plants central cell-derived peptides regulate early embryo patterning in flowering plants. — Science. 344: 168–172.
- Czaplejewicz D., Kozieradzka-Kiszkurno M. 2013. Ultrastructural and cytochemical studies of the embryo suspensor of Sedum reflexum l. (Crassulaceae). — Acta Biol. Cracov. Ser. Bot. 55(2): 76–89. https://doi.org/10.2478/abcsb-2013-0028
- Di Fulvio T.E. 1983. Los “tipos”ˮ de endosperma y de haustorios ensdospérmicos. Su clasificación. — Kurtziana. 16(1–4): 7–31.
- Di Fulvio T.E. 1985. El sistema EODP en el ordenamiento de Tubiflorae y en la endospermogenesis nuclear. — Anal. Acad. Nac. Cj. Exact., Buenos Aires. 37(1–4): 111–119.
- Di Fulvio T.E., Cocucci A.E. 1986. La endospermogenesis nuclear y el sistema EODP. — Kurtziana. 18(1): 13–21.
- Doll N.M., Depege-Fargeix N., Rogowsky P.M., Widiez T. 2017. Signaling in early maize kernel development. — Mol. Plant. 10: 375–388.
- Foster A.S. 1949. Practical plant anatomy. New York. P. 1–155.
- Gajdaj Е., Matichin A., Gajdaj D., Makarova М. 2018. Caenorhabditis elegans as a model object for biomedical studies. — Laboratory Animals for Science. 4: 1–24. https://doi.org/10.29296/2618723X-2018-04-02
- Gilbert S.F. 2003. Developmental biology. Sunderland, Massachusetts. 850 p.
- Grossniklaus U. 2019. Plant development and evolution. Zurich. 642 p.
- Hanstein A. 1870. Die Entwicklung des Keimes der Monokotylen und Dykotylen. — Bot. Abhandl. an Gebiet der Morph. und Physiol. 1(1): 1–112.
- Harnvanichvech Y., Gorelova V., Sprakel J., Weijers D. 2021. The Arabidopsis embryo as a quantifiable model for studying pattern formation. — Quant. Plant Biol. 2, e3: 1–13. https://doi.org/10.1017/qpb.2021.3
- Hofmeister W. 1849. Die Entstehung des Embryo der Phanerogamen. Eine Reihe microscopischer Untersuchungen. Leipzig. 89 S.
- Ji Min S., Ling Y., Masaru O.-T., Tomokazu K. 2020. Cellular dynamics of double fertilization and early embryogenesis in flowering plants. — Plant and Soil Sci. Faculty Publications. 155. 32 p. https://uknowledge.uky.edu/pss_facpub/155
- Johansen D.A. 1950. Plant embryology. Waltham MA. 305 p.
- Johnson R.R. 2017. Embryogenesis. — In: Encyclopedia of applied plant sciences (second edition). 1: 490–496.
- Johri B.M., Ambegaokar K.B., Srivastava P.S. 1992. Comparative embryology of angiosperms. Berlin etc. Vol. 1, 2. 1221 p.
- Jűrgens G. 1995. Axis formation in plant embryogenesis: cues and clues. — Cell (Cambridge). 81: 467–470.
- Jürgens G., Mayer U. 1994. Arabidopsis. — In: Embryos. Colour atlas of development. London. P. 7–21.
- Kalinka A.T., Tomancak P. 2012. The evolution of early animal embryos: conservation or divergence? — Trends in Ecology and Evolution 20: 1–9. http://dx.doi.org/10.1016/j.tree.2012.03.007
- Kamelina O.P. 1997. Piperad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 508–510 (In Russ.).
- Kamelina O.P. 2006. Piperad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 332–333.
- Koval V.A. 2023. Reproductive biology of Coelogyne Lindl. (Orchidaceae Juss.) in culture in greenhouses. — Avtoref. kand. diss. Moscow. 21 p. (In Russ.).
- Krogan N.T., Marcos D., Weiner A.I., Berleth T. 2016.. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. — New Phytol. 212(1): 42–50. https://doi.org/10.1111/nph.14107
- Lau S., Slane D., Herud O., Kong J., Jürgens G. 2012. Early embryogenesis in flowering plants: setting up the basic body pattern. — Annu. Rev. Plant Biol. 63: 483–506.
- Laux T., Jűrgens G. 1994. Establishing the body plan of the Arabidopsis embryo. — Acta Bot. Neerl. 43(3): 247–260.
- Lee Y.I., Yeung E.C. 2010. The osmotic property and fluorescent tracer movement of developing orchid embryos of Phaius tankervilliae (Aiton) Bl. — Sex. Plant Reprod. 23: 337–341. https://doi.org/10.1007/s00497-010-0143-y
- Lee Y.-I., Yeung E.C., Lee N., Chung M.C. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. — Bot Stud. 49: 139–146.
- Liu C.M., Xu Z.H., Chua N.H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. — Plant Cell. 5: 621–630.
- Locascio A., Roig-Villanova I., Bernardi J., Varotto S. 2014. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. — In: Frontiers in Plant Science. 5(412): 1–22.
- Lyndon R.F. 1990. Plant development. London. 310 p.
- Mansfield S.G., Briarthy L.G. 1991. Early embryogenesis in Arabidopsis thalina. II. The developing embryo. — Canad. J. Bot. 69: 461–476.
- Mayer U., Torres Ruiz R.A., Berleth T. et al. 1991. Mutations affecting body organization in the Arabidopsis embryo. — Nature. 353: 402–407.
- Mayer U., Buttner G., Jürgens G. 1993. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. — Development. 117: 149–162.
- Meinke D.W. 1986. Embryo-lethal mutants and the study of plant embryo development. — Oxford Surv. Plant Mol. Biol. 3: 122–163.
- Meinke D.W. 1991a. Embryonic mutants of Arabidopsis thaliana. — Dev. Gen. 12: 382–392.
- Meinke D.W. 1991b. Perspectives of genetic analysis of plant embryogenesis. — Plant Cell. 3(9): 857–866.
- Natesh S., Rau M.A. 1984. The embryo. — In: Embryology of angiosperms. Berlin. P. 377–443.
- Nawaschin S.G. 1898a. New observations of fertilization in Fritillaria tenella и Lilium martagon. — In: Dnevnik X s’ezda russkich estestvoispytatelei I vrachei [Diary of X congress of russian naturalists and doctors]. Kiev. 6: 16–21 (In Russ.).
- Nawasсhin S. 1898b. Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. — Bull. Acad. Imp. Sci. St. Petersbourg. 9(4): 377–382.
- Padmanabhan D. 1996. Tracing the shoot apex in angiosperm embryos. — In: Advances in botany. New Delhi. P. 39–51.
- Periasamy K. 1977. A new approach to the classification of angiosperm embryos. — Proc. Indian Acad. Sci. 86(1): P. 1–12.
- Poddubnaya-Arnoldi V.A. 1976. Cytoembryology of the Angiosperms: principles and perspectives. Moscow. 507 p. (In Russ.).
- Pulak R. 2006. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. — Methods Mol. Biol. 351: 275–286.
- Raghavan V. 1997. Molecular embryology of flowering plants. Cambridge. 690 p. https://doi.org/10.1017/CBO978051157452
- Rudall P.J. 2007. Anatomy of flowering plants. An introduction to structure and development. Cambridge. 145 p.
- Sankara Rao K. 1996. Embryogenesis in flowering plants: recent approaches and prospects. — J. Biosci. 21(6): 827–841.
- Savina G.I., Poddubnaya-Arnoldi V.A. 1990. Orchidaceae family. — In: Comparative embryology of flowering plants. Butomaceae — Lemnaceae. Leningrad. P. 172–179 (In Russ).
- Schmidt E.D.L., Jong A.J. de, Vries S.C. de. 1994. Signal molecules involved in plant embryogenesis. — Plant Molec. Biol. 26: 1305–1313.
- Schnarf K. 1929. Embryologie der Angiospermen. Berlin. 689 S.
- Schnarf K. 1931. Vergleichende Embryologie der Angiospermen. Berlin: Gebrüder Borntraeger. 354 S.
- Schulz R., Jensen W.A. 1968. Capsella embryogenesis: the early embryo. — J. Ultrastr. Res. 22(5–6): 376–392.
- Shamrov I.I. 1996. Genealogical and dynamic approaches to embryo study. — Abstr. September, 12–14, Hamburg, Germaniy, Plant Embryogenesis Workshop. P. 26.
- Shamrov I.I. 1997a. Principles of classification of embryogenesis types. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 493–508 (In Russ.).
- Shamrov I.I. 1997b. Embryogeny. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 297–307 (In Russ.).
- Shamrov I.I. 1997c. Ovule and seed development in Paeonia lactiflora (Paeoniaceae). — Bot. Zhurn. 82 (6): 24–46 (In Russ.).
- Shamrov I.I. 2001. Ovule and seed morphogenesis in Listera ovata (Orchidaceae). — Bot. Zhurn. 86(1): 3–13 (In Russ.).
- Shamrov I.I. 2008. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
- Shamrov I.I. 2022a. Comparative embryology in plants and animals. St. Petersburg. 144 p.
- Shamrov I.I. 2022b. Endosperm development traits under a comparative analysis of endospermogenesis and embryogenesis in angiosperms. — Bot. Zhurn. 107(2): 3–27 (In Russ.). https://doi.org/10.31857/S0006813622020107
- Shamrov I.I. 2022c. Endosperm development traits in a comparative analysis of endospermogenesis and embryogenesis in angiosperms. — Doklady Biological Sciences. 506(6): 239–255. https://doi.org/10.1134/S0012496622050143/
- Shamrov I.I., Anisimova G.M. 1993. Peculiarities of reorganization of ovule into seed in Luzula pedemontana (Juncaceae). — Bot. Zhurn. 78(12): 24–44.
- Shamrov I.I., Anisimova G.M. 2003a. Stages of structural-functional reorganization during ovule and seed development. — Bot. Zhurn. 88(12): 37–61 (In Russ.).
- Shamrov I.I., Anisimova G.M. 2003b. Critical stages of ovule and seed development. — Acta Biol. Cracov. Ser. Bot. 45(1): 167–172.
- Shamrov I.I., Batygina T.B. 1984. Embryo and endosperm development in representatives of Ceratophyllaceae family. — Bot. Zhurn. 69(10): 1328–1335 (In Russ.).
- Shamrov I.I., Nikiticheva Z.I. 1992. Morphogenesis of ovule and seed in Gymnadenia conopsea (Orchidaceae): structural and histochemical investigation. — Bot. Zhurn. 77(4): 45–60 (In Russ.).
- Simpson M.G. 2010. Plant embryology. — In: Plant systematics. Amsterdam etc. P. 450–465.
- Singh H. 1978. Embryology of gymnosperms. Berlin — Stuttgart. 302 p.
- Souèges R. 1935. Exposes d’embryologie et de morphologie végétales. IV. La segmentation. Premier fascicule: I — Les fondaments. II — Les phenomenes internes. — Act. Sci. Industr. 266: 1–88.
- Souèges R. 1937. Exposes d’embryologie et de morphologie végétales. VII. Le lois du developpment. — Act. Sci. Industr. 521: 1–94.
- Souèges R. 1939. Exposes d’embryologie et de morphologie végétales. X. Embryogénie et classification. Deuxième fascicule. Essai d’un système embryogénique (Partie générale). Paris. 95 p.
- Srivastava L.M. 2003. Plant growth and development. Hormones and the environment. — Ann. Bot. 92(6): 846–846. https://doi.org/10.1093/aob/mcg209
- Suárez M.F., Bozhkov P.V. (ed.). 2008. Plant embryogenesis. Totowa, NJ 07512, USA. 184 p.
- Swamy B.G.L.1949. Embryological studies in the Orchidaceae. II. Embryology. — Amer. Midl. Nat. 41: 202–232. https://doi.org/10.2307/2422026
- Swamy B.G.L., Padmanabhan D. 1962. A reconnaissance of angiosperm embryogenesis. — J. Indian Bot. Soc. 41: 422–437.
- Teryokhin E.S. 1996. Seed and seed reproduction. St. Petersburg. 376 p. (In Russ.).
- Teryokhin E.S, Nikiticheva Z.I. 1981. Orobanchaceae family. Ontogenesis and phylogenesis. Leningrad. 228 p. (In Russ.).
- Titova G.E. 1997. Asterad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 512–516 (In Russ.).
- Titova G.E. 2006. Asterad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 335–337.
- Tokin B.P. 1987. General embryology. Moscow. 480 p. (In Russ.).
- Trenin V.V. 1988. Introduction into cytoembryology of conifers. Petrozhavodsk. 152 p. (In Russ.).
- Vallade J. 1989. Embryogenesis and research of fundamental morphogenetic processes. — In: Some aspects and actual orientations in plant embryology. Amies. P. 171–187.
- Veyret Y. 1965. Embryogènie comparée et blastogénie chez les Orchidaceae-Monandrae. — O.R.S.T.O.M. Paris. 106 p.
- Veyret Y. 1974. Development of the embryo and the young seedling stages of orchids. — The Orchids Scientific Studies. New York etc. P. 223–265.
- Wardlaw C.W. 1955. Embryogenesis in plants. London. 391 p.
- Yakovlev M.S. 1958. Principles of distinguishing of main embryonal types and their significance for the phylogeny of angiosperms. — Problems of Botany. 3: 168–195 (In Russ.).
- Yakovlev M.S. 1981. The glossary of main terms. — In: Comparative embryology of flowering plants. Winteraceae — Juglandaceae. Leningrad. P. 7–25 (In Russ.).
- Yamazaki T. 1982. Recognized types in early development of the embryo and the phylogenetic significance in the dicotyledons. — Acta Phytotax. Geobot. 33: 400–409.
- Yang C.-K., Lee Y.-I. 2014. The seed development of a mycoheterotrophic orchid, Cyrtosia javanica Blume. — Bot. Stud. 55, Article 44. https://doi.org/10.1186/s40529-014-0044-8
- Yeung E.C., Meinke D.W. 1993. Embryogenesis in angiosperms: development of the suspensor. — Plant Cell. 5: 1371–1381. https://doi.org/10.1105/tpc.5.10.1371
- Yudakova O.I., Shakina T.N., Kaybeleva E.I. 2018. Cytoembryologycal peculiarities of endosperm development in some apomictic Poa species (Poaceae). — Botanicheskii Zhurnal. 103(7): 908–918 (In Russ.). https://doi.org/10.7868/S0006813618070049
- Zhinkina N.A. 1997a. Solanad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 516–517 (In Russ.).
- Zhinkina N.A. 1997b. Chenopodiad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 517–518 (In Russ.).
- Zhinkina N.A. 1997c. Caryophyllad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. St. Petersburg. Vol. 2. P. 518–520 (In Russ.).
- Zhinkina N.A. 2006a. Solanad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 337–338.
- Zhinkina N.A. 2006b. Chenopodiad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 337–338.
- Zhinkina N.A. 2006c. Caryophyllad-type of embryogenesis. — In: Embryology of flowering plants. Terminology and concepts. Enfield, NH, USA. Vol. 2. P. 339–341.
Supplementary files
