DEVELOPMENT OF FEMALE REPRODUCTIVE STRUCTURES IN BOECHERA (BRASSICACEAE) SPECIES UNDER SEXUAL AND APOMICTIC REPRODUCTIVE MODES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of comparative embryological study of the two species from the genus Boechera (B. falcata and B. stricta), which are characterized by a sexual mode of reproduction, and the apomictic M4B accession, an ancient natural hybrid of B. stricta × B. retrofracta, are presented. A detailed description of the ovule development of the studied plants is described. A significant similarity of the ovule development has been shown; a general plan of the ovules structure is ortho-campylotropic, bitegmal, medionucellate. The development of the embryo sac in B. falcata and B. stricta corresponds to the monosporic Polygonum type; in the ovules of the M4B accession, an apomictic unreduced female gametophyte is predominantly formed as a result of Taraxacum-type diplospory. However, in this accession apomixis is facultative, since a small amount of the ovules in the ovary forms a reduced embryo sac with participation of meiosis, but unlike B. falcata and B. stricta, after the second meiotic division, a triad of megaspores is formed, of which the chalazal one is functional. In the ovules of the apomictic M4B accession, underdevelopment of the inner integument was often observed, which, apparently, correlates with arrest of the megasporocyte and embryo sac development, since destruction was often observed in ovules with a short inner integument. This abnormality is likely due to the hybrid nature of the M4B accession rather than apomixis. In this accession, the embryo is formed parthenogenetically, but its development requires endosperm, which apparently develops by pseudogamy, only after triple fusion (fertilization of the fused polar nuclei by sperm). In the absence of endosperm, the embryo perishes, and seed development is arrested.

About the authors

G. Yu. Vinogradova

Komarov Botanical Institute of RAS

Author for correspondence.
Email: vinogradova-galina@binran.ru
Russia, 197022, St. Petersburg, Prof. Popova Str., 2

N. V. Sinelnikova

Institute of Biological Problems of the North, Far Eastern Branch of RAS

Author for correspondence.
Email: meks_mag@mail.ru
Russia, 685000, Magadan, Portovaya Str., 18

K. M. Taşkin

Çanakkale Onsekiz Mart University

Author for correspondence.
Email: kmtaskin@comu.edu.tr
Turkey, 17100, Çanakkale

V. B. Brukhin

Komarov Botanical Institute of RAS

Author for correspondence.
Email: vbrukhin@gmail.com
Russia, 197022, St. Petersburg, Prof. Popova Str., 2

References

  1. Ahuja Y.R., Bhaduri P.N. 1956. The embryology of Brassica campestris var. toria. – Phytomorphology. 6: 63–67.
  2. Alexander P.J., Windham M.D., Beck J.B., Al-Shehbaz I.A., Allphin L., Bailey C.D. 2013. Molecular phylogenetics and taxonomy of the genus Boechera and related genera (Brassicaceae: Boechereae). – Syst. Bot. 38 (1): 192–209. https://doi.org/10.1600/036364413x661917
  3. Alexander P.J., Windham M.D., Beck J.B., Al-Shehbaz I.A., Allphin L., Bailey C.D. 2015. Weaving a tangled web: divergent and reticulate speciation in Boechera fendleri sensu lato (Brassicaceae; Boechereae). – Syst. Bot. 40 (2): 572–596. https://doi.org/10.1600/036364415x688745
  4. Aliyu O.M., Schranz E., Sharbel T.F. 2010. Quantitative variation for apomixis components in the genus Boechera. – Am. J. Bot. 97 (10): 1719–1731. https://doi.org/10.3732/ajb.1000188
  5. Aliyu O.M., Seifert M., Corral J.M., Fuchs J., Sharbel T.F. 2013. Copy number variation in transcriptionally active regions of sexual and apomictic Boechera demonstrates independently derived apomictic lineages. – The Plant Cell. 25 (10): 3808–3823. https://doi.org/10.1105/tpc.113.113860
  6. Al-Shehbaz I.A. 2005. Nomenclatural notes on Eurasian Arabis (Brassicaceae). – Novon. 15 (4): 519–524.
  7. Asker S.E., Jerling L. 1992. Apomixis in Plants. Boca Raton, FL. 320 p.
  8. Bakin E., Sezer F., Özbilen A., Kilic I., Uner B., Rayko M., Taşkin K.M., Brukhin V. 2022. Phylogenetic and expression analysis of CENH3 and APOLLO genes in sexual and apomictic Boechera species. – Plants (Basel). 11 (3): article 387 (P. 1–17). https://doi.org/10.3390/plants11030387
  9. Barykina R.P., Veselova T.D., Devyatov A.G., Dzhalilova H.H., Ilina G.M., Chubatova N.V. 2004. Spravochnik po botanicheskoi microtechnike. Osnovy I metody [Manuals for botanical microtechnonoly. Basis and metods]. Moscow. 312 p. (In Russ.).
  10. Batygina T.B. 2002. Ovule and seed viewed from reliability of biological systems. – In: Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. Enfield (NH, USA). P. 214–217.
  11. Beck J.B., Alexander P.J., Allphin L., Al-Shehbaz I.A., Rushworth C., Bailey C.D. et al. 2012. Does hybridization drive the transition to asexuality in diploid Boechera (Brassicaceae)? – Evolution. 66 (4): 985–995. https://doi.org/10.1111/j.1558- 5646.2011.01507.x
  12. Beilstein M.A., Nagalingum N.S., Clements M.D., Manchester S.R., Mathews S. 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis tha-liana. – Proc. Natl. Acad. Sci. U.S.A. 107 (43): 18724–18728. https://doi.org/10.1073/pnas.0909766107
  13. Belyaeva L.E., Chajka E.A., Fursa N.S. 1978. Development of anther, ovule and gametogenesis of Diplotaxis tenuifolia DC. – Ukr. Bot. Zhurn. 35 (2): 175–179 (In Ukr.).
  14. Belyaeva L.E., Fursa N.S. 1982. The embryology of Alliaria officinalis (Brassicaceae). I. Formation of male and female flower structures and the study of the flavonoid composition. – Bot. Zhurn. 67 (7): 959–968 (In Russ.).
  15. Belyaeva L.E., Fursa N.S. 1979. Formation of male and female structures of Berteroa incana (L.) DC. flower. – Ukr. Bot. Zhurn. 36 (6): 574–577 (In Ukr.).
  16. Belyaeva L.E., Rodionova G.B. 1983 Family Brassicaceae. – In: Comparative embryology of flowering plants. Phytolaccaceae – Thymelaeaceae. Leningrad. P. 154–164 (In Russ.).
  17. Böcher T.W. 1951. Cytological and embryological studies in the amphiapomictic Arabis holboellii complex. – Det. Kongelige Danske Videnskabernes Selskab. Biol. Skrif. 6: 1–59.
  18. Brukhin V. 2017. Molecular and genetic regulation of apomixis. – Russian Journal of Genetics. 53 (9): 943–964. https://doi.org/10.1134/S1022795417090046
  19. Brukhin V., Osadtchiy J.V., Florez-Rueda A.M., Sme-tanin D., Bakin E., Nobre M.S. et al. 2019. The Boechera genus as a resource for apomixis research. – Front. Plant Sci.10: article 392 (P. 1–19). https://doi.org/10.3389/fpls.2019.00392
  20. Carman J.G., Mateo de Arias M., Gao L., Zhao X., Ko-wallis B., Sherwood D.A., et al. 2019. Apospory in addition to diplospory is common in Boechera where it may facilitate speciation by recombination-driven apomixis-to-sex reversals. – Front. Plant Sci. 10: article 724 (P. 1–14). https://doi.org/10.3389/fpls.2019.00724
  21. Corral J.M., Vogel H., Aliyu O.M., Hensel G., Thiel T., Kumlehn J., et al. 2013. A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic Boechera species. – Plant Physiol. 163 (4): 1660–1672. https://doi.org/10.1104/pp.113.222430
  22. Czapik R. 1974. Embryology of five species of the Arabis hirsuta complex. – Acta Biol. Cracov. Ser. Bot. 17: 13–25.
  23. Gerassimova-Navashina E.N. 1958. O gametofite i ob osnovnych chertah razvitiya i funktsionirivaniya vosproizvodyaschih elementov u pokrytosemennyh rastenii [About gametophyte and main signs of development and functioning reproductive elements in Angiosperms]. – Problemy botaniki. 3: 125–167 (In Russ.).
  24. Hendriks K.P., Kiefer C., Al-Shehbaz I.A., Bailey C.D., van Huysduynen A.H., Nikolov L.A. et al. 2023. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. – Current Biology. 33 (19): 4052–4068. https://doi.org/10.1016/j.cub.2023.08.026
  25. Iljina G.M. 1962. Embriologicheskoe issledovanie gorchitsy Brassica juncea (L.) Czern. (Embryological study of mustard, Brassica juncea (L.) Czern. – Vestnik Moscow State University. 1: 34–45 (In Russ.).
  26. Jordon-Thaden I.E., Al-Shehbaz I.A., Koch M.A. 2013. Species richness of the globally distributed, arctic–alpine genus Draba L. (Brassicaceae). – Alpine Bot. 123: 97–106. https://doi.org/10.1007/s00035-013-0120-9
  27. Kantama L., Sharbel T.F., Schranz M.E., Mitchell-Olds T., de Vries S., de Jong H. 2007. Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. – Proc. Natl. Acad. Sci. U.S.A. 104 (35): 14026–14031. https://doi.org/10.1073/pnas.0706647104
  28. Kiefer C., Dobeš C., Koch M.A. 2009. Boechera or not? Phylogeny and phylogeography of eastern North American Boechera species (Brassicaceae). – Taxon. 58 (4): 1109–1121. https://doi.org/10.1002/tax.584005
  29. Kliver S., Rayko M., Komissarov A., Bakin E., Zhernakova D., Prasad K. et al. 2018. Assembly of the Boechera retrofracta genome and evolutionary analysis of apomixis-associated genes. – Genes (Basel). 9 (4): article 185 (P. 1–16). https://doi.org/10.3390/genes9040185
  30. Koch M.A., Bishop J., Mitchell-Olds T. 1999. Molecular systematic and evolution of Arabidopsis and Arabis. – Plant Biol. 1 (5): 529–537. https://doi.org/10.1111/j.1438-8677.1999.tb00779.x
  31. Koch M.A., Haubold B., Mitchell-Olds T. 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). – Mol. Biol. Evol. 17 (10): 1483–1498. https://doi.org/10.1093/oxfordjournals.molbev.a026248
  32. Koch M.A., Dobeš C., Mitchell-Olds T. 2003. Multiple hybrid formation in natural populations: Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). – Mol. Biol. Evol. 20 (3): 338–350. https://doi.org/10.1093/molbev/msg046
  33. Li F.W., Rushworth C.A., Beck J.B., Windham M.D. 2017. Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. – Database. 2017: baw169. https://doi.org/10.1093/database/baw169
  34. Lora J., Herrero M., Tucker M.R., Hormaza J.I. 2017. The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. – New Phytol. 216 (2): 495–509. https://doi.org/10.1111/nph.14330
  35. Löve A., Löve D. 1976. Nomenclatural notes on arctic plants. – Bot. Not. 128: 497–523.
  36. Mandáková T., Schranz M.E., Sharbel T.F., de Jong H., Lysak M.A. 2015. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. – Plant J. 82 (5): 785–793. https://doi.org/10.1111/tpj.12849
  37. Mandáková T., Hloušková P., Windham M.D., Mitchell-Olds T., Ashby K., Price B., Carman J., Lysak M. 2020. Chromosomal evolution and apomixis in the cruciferous tribe Boechereae. – Front. Plant Sci. 11: article 514 (P. 1–17). https://doi.org/10.3389/fpls.2020.00514
  38. Mandáková T., Ashby K., Price B.J., Windham M.D., Carman J.G., Lysak M.A. 2021. Genome structure and apomixis in Phoenicaulis (Brassicaceae; Boeche-reae). – J. Syst. Evol. 59 (1): 83–92. https://doi.org/10.1111/jse.12555
  39. Mateo de Arias M., Gao L., Sherwood D.A., Dwivedi K.K., Price B.J., Jamison M. et al. 2020. Whether gametophytes are reduced or unreduced in angiosperms might be determined metabolically genes. – Genes. 11: article 1449 (P. 1–38). https://doi.org/10.3390/genes11121449
  40. Mau M., Corral J.M., Vogel H., Melzer M., Fuchs J., Kuhlmann M., et al. 2013. The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. – Plant Physiol. 163 (4): 1640–1659. https://doi.org/10.1104/pp.113.222448
  41. Mau M., Liiving T., Fomenko L., Goertzen R., Paczesniak D., Böttner L. et al. 2021. The spread of infectious asexuality through haploid pollen. – New Phytol. 230 (2): 804–820. https://doi.org/10.1111/nph.17174
  42. Mau M., Mandáková T.M., Ma X., Ebersbach J., Zou L., Lysak M.A., Sharbel T.F. 2022. Evolution of an apomixis-specific allele class in supernumerary chromatin of apomictic Boechera. – Front. Plant. Sci. 13: article 890038 (P. 1–17). https://doi.org/10.3389/fpls.2022.890038
  43. Mosquin T., Hayley D.E. 1966. Chromosome numbers and taxonomy of some Canadian arctic plants. – Can. J. Bot. 44 (9): 1209–1218. https://doi.org/10.1139/b66-132
  44. Mulligan G.A. 1966. Chromosome numbers of the family Crucifereae III. – Can. J. Bot. 44 (3): 309–319. https://doi.org/10.1139/b66-037
  45. Mulligan G.A., Findlay J.N. 1970. Sexual reproduction and agamospermy in the genus Draba. – Can. J. Bot. 48 (2): 269–271. https://doi.org/10.1139/b70-040
  46. Naumova T.N., van der Laak J., Osadtchiy J., Matzk F., Kravtchenko A., Bergervoet J., et al. 2001. Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). – Sex. Plant Reprod. 14 (4): 195–200. https://doi.org/10.1007/s00497-001-0118-0
  47. Nikolov L.A., Shushkov P., Nevado B., Ga X., Al-Shehbaz I.A., Filatov D., et al. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. – New Phytol. 222 (3): 1638–1651. https://doi.org/10.1111/nph.15732
  48. Osadtchiy J.V., Naumova T.N., Brukhin V.B. 2017. Apomixis in the genus Boechera (Brassicaceae): the current state of the problem. – Bot. Zhurn. 102 (12): 1587–1607 (In Russ.).
  49. Pausheva Z.P. 1980. Praktikum po tsitologii rastenii [Manuals for plant cytology]. Moscow. 255 p. (In Russ.).
  50. Poddubnaya-Arnoldi V.A. 1976. Tsitoembriologiya pokrytosemennykh rasteniy. Osnovy i perspektivy [Cytoembryology of angiosperms. Basis and perspectives]. Moscow. 508 p. (In Russ.).
  51. Ray A., Lang J.D., Golden T., Ray S. 1996. SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. – Development. 122 (9): 2631–2638. https://doi.org/10.1242/dev.122.9.2631
  52. Rodionova G.B. 1966а. Megasporogenez u Hesperis steveniana DC. (Megasporogenesis in Hesperis steveniana DC.). – Vestnik Moscow State University. 5: 68–72 (In Russ.).
  53. Rodionova G.B. 1966b. Embriologicheskoe issledovanie Eruca sativa Lam. (Embryological study of Eruca sativa Lam.). – Vestnik Moscow State University. 1: 61–68 (In Russ.).
  54. Rodionova G.B. 1971а. Embriologicheskoe issledovanie Hesperis steveniana DC. (Embryological study of Hesperis steveniana DC.). – In: Morfologia tsvetkobykh rasteniy (Morphology of flowering plants). Мoscow. P. 34–54 (In Russ.).
  55. Rodionova G.B. 1971b. Embriologicheskoe razvitie Erysimum pannonicum Crantz. (Embryological development of Erysimum pannonicum Crantz.). – Vestnik Moscow State University. 5: 52–57 (In Russ.).
  56. Rodionova G.B. 1971c. Embriologiya Lunaria annua L. (Embryology of Lunaria annua L.). – Vestnik Moscow State University. 4: 59–63 (In Russ.).
  57. Rodionova G.B. 1976. Embriologicheskoe razvitie Macro-podium (Pall.) R. Br. iz semeistva rhtstotsvetnykh (Embryological development of Macropodium (Pall.) R. Br. from Brassicaceae). – In: Rost rasteniy i puti ego regulirovaniya (Plant growth and its regulation). Мoscow. P. 126–139 (In Russ.).
  58. Rodionova G.B. 1978. O razvitii kroyuschikh kletok v semeystve krestotsvetnykh (About development of parietal cells in Brassicaceae). – In: Tezisy dokladov VI Delegatskogo C’ezda VBO (Proceedings of Delegates Congress of Soviet Botanical Society). Leningrad. P. 110 (In Russ.).
  59. Rodionova G.B. 1979. Razvitie zhenskikh embrionalnykh struktur, endosperma I zarodysha u sverbigi vostochnoi (Development of female embryological structures, endosperm and embryo in Bunias orientalis). – Bull. Glavnogo Bot. Sada. 113: 90–96 (In Russ.).
  60. Rojek J., Kapusta M., Kozieradzka-Kiszkurno M., Majcher D., Gorniak M., Sliwinska E., et al. 2018. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). – Ann. Bot. 122 (4): 513–539. https://doi.org/10.1093/aob/mcy114
  61. Rushworth C.A., Windham M.D., Keith R.A., Mitchell-Olds T. 2018. Ecological differentiation facilitates fine-scale coexistence of sexual and asexual Boechera. – Am. J. Bot. 105 (12): 2051–2064. https://doi.org/10.1002/ajb2.1201
  62. Rushworth C.A., Mitchell-Olds T. 2021. The evolution of sex is tempered by costly hybridization in Boechera (rock cress) – J. Heredity. 112 (1): 67–77. https://doi.org/10.1093/jhered/esaa041
  63. Schmidt A., Schmid M.W., Klostermeier U.C., Qi W., Guthörl D., Sailer C. et al. 2014. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. – PLoS Genet. 10 (7): article e1004476 (P. 1–21). https://doi.org/10.1371/journal.pgen.1004476
  64. Schranz M.E., Dobes C., Koch M.A., Mitchell-Olds T. 2005. Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). – Am. J. Bot. 92 (11): 1797–1810. https://doi.org/10.3732/ajb.92.11.1797
  65. Schranz M.E., Kantama L., De Jong H., Mitchell-Olds T. 2006. Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apornixis in Boechera (Brassicaceae). – New Phytol. 171 (2): 425–438. https://doi.org/10.1111/j.1469-8137.2006.01765.x
  66. Schranz M.E., Windsor A.J., Song B.H., Lawton-Rauh A., Mitchell-Olds T. 2007. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. – Plant Physiol. 144 (1): 286–298. https://doi.org/10.1104/pp.107.096685
  67. Shamrov I.I. 2002а. Ovule and seed morphogenesis in Capsella bursa-pastoris (Brassicaceae) in connection with peculiar mode of endothelium formation. – Bot. Zhurn. 87 (2): 1–18 (In Russ.).
  68. Shamrov I.I. 2002b. Ovule and seed study in Capsella bursa-pastoris (Brassicaceae) with a peculiar endothelium formation pattern. – Acta Biol. Cracov. Ser. Bot. 44: 79–90.
  69. Shamrov I.I. 2008. Ovule of flowering plants: structure, functions, origin. Moscow. 350 p. (In Russ.).
  70. Shamrov I. I. 2017. Morphological types of ovules in flowering plants. – Bot. Zhurn. 102 (2): 129–146 (In Russ.).
  71. Sharbel T.F., Voigt M.L., Mitchell-Olds T., Kantama L., De Jong H. 2004. Is the aneuploid chromosome in an apomictic Boechera holboellii a genuine B chromosome? – Cytogenet. Genome Res. 106 (2–4): 173–183. https://doi.org/10.1159/000079284
  72. Sharbel T.F., Mitchell-Olds T.M., Dobes C., Kantama L., de Jong H. 2005. Biogeographic distribution of polyploidy and B chromosomes in the apomictic Boechera holboellii complex. – Cytogenet. Genome Res. 109 (1–3): 283–292. https://doi.org/10.1159/000082411
  73. Sharbel T.F., Voigt M.L., Corral J.M., Thiel T., Varshney A., Kumlehn J. et al. 2009. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. – Plant J. 58 (5): 870–882. https://doi.org/10.1111/j.1365-313X.2009.03826.x
  74. Sharbel T.F., Voigt M.L., Corral J.M., Galla G., Kumlehn J., Klukas C. et al. 2010. Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. – Cell. 22 (3): 655–671. https://doi.org/10.1105/tpc.109.072223
  75. Shishkinskaya N.A., Yudakova O.I., Tyrnov V.S. 2004. Population embryology and apomixis in cereals. Saratov. 145 p. (In Russ.).
  76. Sieber P., Gheyselinck J., Gross-Hardtl R., Laux T., Grossniklaus U., Schneitz K. 2004. Pattern formation during early ovule development in Arabidopsis thaliana. – Dev. Biol. 273 (2): 321–334. https://doi.org/10.1016/j.ydbio.2004.05.037
  77. Sulbha K. 1957. Embryology of Brassica juncea Czern & Coss. – J. Indian Bot. Soc. 36(3): 292–301.
  78. Tucker M.R., Okada T., Hu Y., Scholefield A., Taylor J.M., Koltunow A.M. 2012. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. – Development. 139 (8): 1399–1404. https://doi.org/10.1242/dev.075390
  79. Taşkin K.M., Turgut K., Scott R.J. 2004. Apomictic deve-lopment in Arabis gunnisoniana. – Israel J. Plant Sci. 52 (2): 155–160. https://doi.org/10.1560/L3DE-FMVY-1XCQ-QRY5
  80. Vandendries R. 1909. Contribution à l’étude du développement de l’ovule dans les Crucifèrs. – Cellule. 25: 412–459.
  81. Vandendries R. 1912.Contribution à l’étude du développement de l’ovule dans les Crucifèrs. 2. L’archesporium dans le genre Cardamine. – Cellule. 28: 215–225.
  82. Voigt M.L., Melzer M., Rutten T., Mitchell-Olds T., Sharbel T.F. 2007. Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. – In: Apomixis: Evolution, mechanisms and perspectives. Rugell: A.R.G. Gantner Verlag. P. 236–257.
  83. Voigt-Zielinski M.L., Piwczynski M., Sharbel T.F. 2012. Differential effects of polyploidy and diploidy on fitness of apomictic Boechera. – Sex. Plant Reprod. 25 (2): 97–109. https://doi.org/10.1007/s00497-012-0181-8
  84. Wang H., Liu Y., Bruffett K., Lee J., Hause G., Walker J.C., Zhang S. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. – Plant Cell. 20 (3): 602–613. https://doi.org/10.1105/tpc.108.058032
  85. Windham M.D., Beck J.B., Li F.-W., Allphin L., Carman J.G., Sherwood D.A. et al. 2015. Searching for diamonds in the apomictic rough: a case study involving Boechera lignifera (Brassicaceae). – Syst. Bot. 40 (4): 1031–1044. https://doi.org/10.1600/036364415x690076

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (3MB)
4.

Download (3MB)

Copyright (c) 2023 Г.Ю. Виноградова, Н.В. Синельникова, К.М. Ташкин, В.Б. Брюхин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies