CRYPTOHYBRIDS IN PLANTS: UNDERWATER PART OF THE ICEBERG

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interspecific hybridization is widespread in plants and is the most important factor in their evolution. For a long time, the main criterion for the hybrid origin of a plant was considered to be the morphological intermediacy of noticeable external characters. However, as the methods of chemistry and molecular biology are introduced into systematics and larger samples are studied, the researches increasingly identify the plants which are chemically and genetically hybrid, but are outwardly indistinguishable from the hypothetical parents or have an unusual combination of traits that does not allow us to recognize the hybridity and the parents by morphology.

Subsequent closer study of such identified “molecular hybrids” with application of morphometry often makes it possible to find morphological, often quantitative or microscopic characteristics which confirm the hybrid nature of these plants as well. Identification and study of cryptic hybrids is important for the systematics of complex taxonomic groups with wide phenotypic plasticity, with a large number of similar species, and simplified morphology. It helps to better understand the conditions under which hybridization can occur, and is important in practical terms, especially for the control of invasive species, for the protection of rare and endangered species, etc.

About the authors

V. S. Shneyer

Komarov Botanical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: shneyer@rambler.ru
Russia, 197022, St. Petersburg, Prof. Popova Str., 2

E. O. Punina

Komarov Botanical Institute of the Russian Academy of Sciences

Email: shneyer@rambler.ru
Russia, 197022, St. Petersburg, Prof. Popova Str., 2

V. V. Domashkina

Komarov Botanical Institute of the Russian Academy of Sciences; St. Petersburg State University

Email: shneyer@rambler.ru
Russia, 197022, St. Petersburg, Prof. Popova Str., 2; Russia, 199034, St. Petersburg, Universitetskaya Emb., 7–9

A. V. Rodionov

Komarov Botanical Institute of the Russian Academy of Sciences

Email: shneyer@rambler.ru
Russia, 197022, St. Petersburg, Prof. Popova Str., 2

References

  1. Alston R.E., Turner B.L., Lester R.N., Horne D. 1962. Chromatographic Validation of Two Morphologically Similar Hybrids of Different Origins. – Science. 137 (3535): 1048–1050. https://doi.org/10.1126/science.137.3535.1048.
  2. Ayres D.R., Garcia-Rossi D., Davis H.G., Strong D.R. 1999. Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). – Molec. Ecol. 8 (7): 1179–1186. https://doi.org/10.1046/j.1365-294x.1999.00679.x
  3. Ayres D.R., Zaremba K., Sloop C.M., Strong D.R. 2008. Sexual reproduction of cordgrass hybrids (Spartina foliosa × alterniflora) invading tidal marshes in San Francisco Bay. – Diversity and Distributions.14: 187–195. https://doi.org/10.1111/j.1472-4642.2007.00414.x
  4. Baiakhmetov E., Ryzhakova D., Gudkova P.D., Nobis M. 2021. Evidence for extensive hybridization and past introgression events in feather grasses using genome-wide SNP genotyping. – BMC Plant Biol. 21: 505. https://doi.org/10.1186/s12870-021-03287-w
  5. Bateman R.M., Murphy A.R.M., Tattersall B.G. 2017. × Dactylodenia lacerta (Orchidaceae): a morphologically cryptic hybrid orchid new to science from the Lizard Peninsula, Cornwall. – New Journal of Botany. 7 (2–3): 64–77. https://doi.org/10.1080/20423489.2017.1408189
  6. Bean D., Dudley T. 2018. A synoptic review of Tamarix biocontrol in North America: tracking success in the midst of controversy. – BioControl. 63 (3): 361–376.
  7. Beatty G.E., Barker L., Chen P.-P., Kelleher C.T., Provan J. 2015. Cryptic introgression into the kidney saxifrage (Saxifraga hirsuta) from its more abundant sympatric congener Saxifraga spathularis, and the potential risk of genetic assimilation. – Ann. Bot. 115 (2):179–86. https://doi.org/10.1093/aob/mcu226.
  8. Beatty G.E., Philipp M., Provan J. 2009. Unidirectional hybridization at a species’ range boundary: implications for habitat tracking. – Diversity and Distributions. 16 (1): 1–9. https://doi.org/10.1111/j.1472-4642.2009.00616.x
  9. Beirinckx L., Vanschoenwinkel B., Triest L. 2020. Hidden Hybridization and Habitat Differentiation in a Mediterranean Macrophyte, the Euryhaline Genus Ruppia. – Front. Plant Sci. 11: 830. https://doi.org/10.3389/fpls.2020.00830
  10. Belyakov E.A., Mikhaylova Y.V., Machs E.M., Zhurbenko P.M., Rodionov A.V. 2022. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. – Scientific Reports, 12 (1): 1–12. https://doi.org/10.1038/s41598-022-25954-0
  11. Bentham G., Hooker J. 1862–1887. Genera plantarum. Londini. Vol. 1–3.
  12. Borkin L.Ya., Litvinchuk S.N. 2013. Gibridizatsiya, vido-obrazovaniye i sistematika zhivotnykh. [Animal hybridization, speciation and systematics] – Trudy Zoolo-gicheskogo Instituta RAN. Prilozheniye 2: 83–139.
  13. Boswell A., Sing S.E., Ward S.M. 2016. Plastid DNA Analysis Reveals Cryptic Hybridization in Invasive Dalmatian Toadflax (Linaria dalmatica) Populations. – Invasive Plant Science and Management. 9: 112–120. https://doi.org/10.1614/IPSM-D-16-00003.1
  14. Buck R., Hyasat S., Hossfeld A., Flores-Renteria L. 2020. Patterns of hybridization and cryptic introgression among one- and four-needled pinyon pines. – Ann. Bot. 126: 401–411. https://doi.org/10.1093/aob/mcaa045
  15. Butkuviené J., Sinkevičiené Z., Naugžemys D., Žvingi-la D., Skridaila A., Bobrov A.A. 2020. Genetic Diversity of Aquatic Ranunculus (Batrachium, Ranunculaceae) in One River Basin Caused by Hybridization. – Plants. 9: 1455. https://doi.org/10.3390/plants9111455
  16. Catalán P., Müller J., Hasterok R., Jenkins G., Mur L.A., Langdon T., Betekhtin A., Siwinska D., Pimentel M., López-Alvarez D. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. – Ann. Bot. 109 (2): 385–405. https://doi.org/10.1093/aob/mcr294
  17. Ciotir C., Freeland J.R., 2016. Cryptic intercontinental dispersal, commercial retailers, and the genetic diversity of native and non-native cattails (Typha spp.) in North America. – Hydrobiologia. 768: 137–150.
  18. DeLoach C.J., Lewis P.A., Herr J.C., Carruthers R.I., Tracy J.L., Johnson J. 2003. Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) from Asia, a biological control agent for saltcedars (Tamarix: Tamaricaceae) in the Western United States. – Biological Control. 27 (2): 117–147.
  19. Desjardins S.D., Leslie A.L., Stace C.A., Schwarzacher T., Bailey J.P. 2015. Intergeneric hybridisation between Berula erecta and Helosciadium nodiflorum (Apia-ceae). – Taxon. 64 (4): 784–794.
  20. Dinh Thi V.H., Coriton O., Le Clainche I., Arnaud D., Gordon S.P., Linc G., Catalán P., Hasterok R., Vogel J.P., Jahier J., Chalhoub B. 2016. Recreating stable Brachypodium hybridum allotetraploids by uniting the divergent genomes of B. distachyon and B. stacei. – PLoS One. 11 (12): e0167171. https://doi.org/10.1371/journal.pone.0167171
  21. Dominy N.J., Ross C.F., Smith T.D. 2004. Evolution of the special senses in primates: past, present, and future. – The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists, 281 (1): 1078–1082.
  22. Douglas G.M., Gos G., Steige K.A., Salcedo A., Holm K., Josephs E.B., Arunkumar R., Ågren J.A., Hazzou-ri K.M., Wang W., Platts A.E., Williamson R.J., Neuffer D., Lascoux M., Slotte T., Wright S.I. 2015. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. – Proc. Natl. Acad. Sci. USA. 112(9): 2806–2811. https://doi.org/10.1073/pnas.1412277112
  23. Du Z.-Y., Yang C.-F., Chen J.-M., Guo Y.-H., Kadiri A.B. 2010. Using DNA-based techniques to identify hybrids among linear-leaved Potamogeton plants collected in China. – Journal of Systematics and Evolution 48 (4): 265–270. https://doi.org/10.1111/j.1759-6831.2010.00089.x
  24. Ellstrand N.C., Whitkus R., Rieseberg L.H. 1996. Distribution of spontaneous plant hybrids. – Proc. Natl. Acad. Sci. USA. 97: 7043–7050.
  25. Ferguson D., Sang T. 2001. Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). – Proc. Natl. Acad. Sci. U.S.A. 98(7): 3915–3919.
  26. Focke W.O. 1881. Die Pflanzen-Mischlinge: Ein Beitrag zur Biologie der Gewächse. – Berlin. 578 S.
  27. Gaskin J.F., Schaal B.A. 2002. Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. – Proc. Natl. Acad. Sci. U.S.A. 99(17): 11256–11259. https://doi.org/10.1073_pnas.132403299
  28. Gaskin J.F., Schaal B.A. 2003. Molecular Phylogenetic Investigation of U.S. Invasive Tamarix. – Syst. Bot. 28(1): 86–95. https://doi.org/10.1043/0363-6445-28.1.86
  29. Gleason H.A., Cronquist A. 1963. Manual of vascular plants of northeastern United States and adjacent Canada D.Van Nostrand Company, Princeton, NJ. 810 p.
  30. Glisson W., Larkin D.J. 2021. Hybrid watermilfoil (Myriophyllum spicatum × Myriophyllum sibiricum) exhibits traits associated with greater invasiveness than its introduced and native parental taxa. – Biological Invasions 23(8): 2417–2433. https://doi.org/10.1007/s10530-021-02514-7
  31. Gnutikov A.A., Nosov N.N., Koroleva T.M., Punina E.O., Probatova N.S., Shneyer V.S., Rodionov A.V. 2022a. Origin of the Rare Hybrid Genus × Trisetokoeleria Tzvelev (Poaceae) According to Molecular Phylogenetic Data – Plants. 11(24): 3533.
  32. Gnutikov A.A., Nosov N.N., Loskutov I.G., Machs E.M., Blinova E.V., Probatova N.S., Langdon T., Rodio-nov A.V. 2022b. New insights into the genomic structure of the oats (Avena L., Poaceae): intragenomic polymorphism of ITS1 sequences of rare endemic species Avena bruhnsiana Gruner and its relationship to other species with C-genomes – Euphytica. 218: 3. https://doi.org/10.1007/s10681-021-02956-z
  33. Haynes R.R., Williams D.C. 1975. Evidence for the hybrid origin of Potamogeton longiligulatus (Potamogetonaceae). – Michigan Bot. 14: 94–100.
  34. Hellquist C.B., Crow G.E. 1986. Potamogeton × haynesii (Potamogetonaceae), a new species from northeastern North America. – Brittonia, 38(4): 415–419.
  35. Hettiarachchi P., Triest L. 1991. Isozyme polymorphism in the genus Potamogeton (Potamogetonaceae). – Opera Bot. Belg. 4: 87–114.
  36. Hill M.O., Preston C.D., Roy D.B. 2004. PLANTATT: attributes of British and Irish plants: status, size, life history, geography and habitats. Huntingdon: Centre for Ecology and Hydrology. 72 p.
  37. Hollingsworth P.M., Preston C.D., Gornall R. J. 1995. Isozyme evidence for hybridization between Potamogeton natans and P. nodosus(Potamogetonaceae) in Britain. – Bot. J. Linn. Soc. 117: 59–69.
  38. IBI. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. – Nature. 463: 763–768. https://doi.org/10.1038/nature08747
  39. Isoda K., Shiraishi S.,Watanabe S., Kitamura K. 2000. Molecular evidence of natural hybridization between Abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. – Mol. Ecol. 9 (12): 1965–1974.
  40. Janzen D.H. 1979. How to Be a Fig. – Annu. Rev. Ecol. Syst. 10: 13–51. https://doi.org/10.1146/annurev.es.10.110179.000305
  41. Jasińska A.K., Wachowiak W., Muchewicz E., Boratyńska K., Montserrat J.M., Boratyński A. 2010. Cryptic hybrids between Pinus uncinata and P. sylvestris. – Bot. J. Linn. Soc.163: 473–485.
  42. Jeffrey E.C. 1915. Some fundamental morphological objections to the mutation theory of de Vries. – The Amer.Nat. 49 (577): 5–121.
  43. Jones G. 1997. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. – Advances in the Study of Behaviour, 26: 317–354.
  44. Kaplan Z., Fehrer J. 2006. Comparison of natural and artificial hybridization in Potamogeton. – Preslia 78: 303–316.
  45. Kaplan Z., Fehrer J. 2011. Erroneous identities of Potamogeton hybrids corrected by molecular analysis of plants from type clones. – Taxon. 60 (3): 758–766. https://doi.org/10.1002/tax.603011
  46. Kaplan Z., Fehrer J., Bambasová V., Hellquist C.B. 2018. The endangered Florida pondweed (Potamogeton floridanus) is a hybrid: Why we need to understand biodiversity thoroughly. – PLoS ONE 13 (4): e0195241. https://doi.org/10.1371/journal.pone.0195241
  47. Kaplan Z., Fehrer J., Hellquist C.B. 2009. New hybrid combinations revealed by molecular analysis: The unknown side of North American pondweed diversity (Potamogeton). – Syst. Bot. 34: 625–642. https://doi.org/10.1600/036364409790139745
  48. Kartzinel R.Y., Spalink D., Donald M., Waller D.M., Givnish T.J. 2016. Divergence and isolation of cryptic sympatric taxa within the annual legume Amphicarpaea bracteata. – Ecology and Evolution. 6 (10): 3367–3379. https://doi.org/10.1002/ece3.2134
  49. Kellogg E.A., Appels R., Mason-Gamer R.J. 1996. When genes tell different stories: the diploid genera of Triticeae (Gramineae). – Syst. Bot. 21 (3): 321–347.
  50. Khlestkina E.K. 2013. Molekulyarnyie markery v geneticheskikh issledovaniyakh i v selektsii [Molecular markers in genetical researches and in selection]. – Vavilovskiy zhurnal genetiki i selektsii. 17 (4): 1044–1054.
  51. Kölreuter J.G. 1761–1766. Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betrefenden Versuchten. Leipzig. 420 S.
  52. Komarov V.L. 1940. Ucheniye o vide u rasteniy. [The doctrine of the species in plants] Moscow, Leningrad: Izdatel’stvo AN SSSR. 212 p.
  53. Kook E., Vedler E., Püssa K., Kalamees R., Reier Ü., Pihu S. 2015. Intra-individual ITS polymorphism and hybridization in Pulmonaria obscura Dumort. and Pulmonaria angustifolia L. (Boraginaceae). – Plant Syst. Evol. 301: 893–910. https://doi.org/10.1007/s00606-014-1123-8
  54. Knobloch I. W. 1972. Intergeneric Hybridization in Flowering Plants. – Taxon. 21 (1): 97–103.
  55. Kuehn M.M., Minor J.E., White B.N. 2000. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA. – Mol. Ecol. 8 (12): 1981–1990. https://doi.org/10.1046/j.1365-294x.1999.00792.x
  56. Kuehn M.M., White B.N. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha × glauca. – Can. J. Bot. 77: 906–912.
  57. Kutsev M.G. 2009. Fragmentnyi analiz DNK rasteniy: RAPD, DAF, ISSR [An analysis of plant DNA fragments: RAPD, DAF, ISSR]. Barnaul, 163 p.
  58. LaRue E.A., Grimm D., Thum R.A. 2013. Laboratory crosses and genetic analysis of natural populations demonstrate sexual viability of invasive hybrid watermilfoils (Myriophyllum spicatum × M. sibiricum). – Aquat. Bot. 109: 49–53. https://doi.org/10.1016/j.aquabot.2013.04.004
  59. Les D.H., Philbrick C.T. 1993. Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. – Aquatic Botany. 44: 181–228.
  60. Levin D.A. 1967a. An analysis of hybridization in Liatris. – Brittonia. 19: 248–260.
  61. Levin D.A. 2012. The long wait for hybrid sterility in flowering plants. – New Phytologist 196: 666–670.
  62. Levin D.A., Francisco-Ortega J., Jansen R.K. 1996. Hybridization and the extinction of rare plant species. – Conservation Biology. 10: 10–16.
  63. Liebeke M., Bruford M.W., Donnelly R.K., Ebbels T.M., Hao J., Kille P., Lahive E., Madison R., Morgan A.J., Pinto-Juma G.A., Spurgeon D.J., Svendsen C., Bundy J.G. 2014. Identifying biochemical phenotypic differences between cryptic species. – Biology letters, 10 (9): 20140615.
  64. Lukhtanov V.A. 2019. Species delimitation and analysis of cryptic species diversity in the XXI century. – Entomological Review 99: 463–472.
  65. Ma Y.-P., Tian X.-L., Zhang J.-L., Wu Z.-K., Sun W.-B. 2019. Evidence for natural hybridization between Primula beesiana and P. bulleyana, two heterostylous primroses in NW Yunnan, China. – Journal of Systematics and Evolution. 52 (4): 1–8. https://doi.org/10.1111/jse.12077
  66. Mallet J. 2005. Hybridization as an invasion of the genome. – Trends Ecol. Evol. 20 (5): 229–237. https://doi.org/10.1016/j.tree.2005.02.010
  67. Martinsson K. 1991. Natural hybridization within the genus Callitriche (Callitrichaceae) in Sweden – Nord. J. Bot. 11: 143–151.
  68. Mayonde S.G., Cron G.V., Gaskin J.F., Byrne M.J. 2016. Tamarix (Tamaricaceae) hybrids: the dominant invasive genotype in southern Africa. – Biol. Invasions. 18: 3575–3594. https://doi.org/10.1007/s10530-016-1249-4
  69. McIntosh E.J., Rossetto M., Weston P.H., Wardle G.M. 2014. Maintenance of strong morphological differentiation despite ongoing natural hybridization between sympatric species of Lomatia (Proteaceae). – Ann. Bot. 113: 861–872.
  70. Mitchell N., Holsinger K.E. 2018. Cryptic natural hybridization between two species of Protea. – South Afr. J. Bot. 118: 306–314.
  71. Montes J.R., Peláez P., Willyard A., Moreno-Letelier A., Piсero D., Gernandt D.S. 2019. Phylogenetics of Pinus subsection Cembroides Engelm. (Pinaceae) inferred from low-copy nuclear gene sequences. – Syst. Bot. 44: 501–518.
  72. Moody M.L., Les D.H. 2002. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. – Proc. Natl. Acad. Sci. U.S.A. 99 (23): 14867–14871. https://doi.org/10.1073_pnas.172391499
  73. Moody M.L., Les D.H. 2007. Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in North America. – Biol Invasions 9: 559–570. https://doi.org/10.1007/s10530-006-9058-9
  74. Parker M.A. 1996. Cryptic species within Amphicarpaea bracteata (Leguminosae): evidence from isozymes, morphology, and pathogen specificity. – Can. J. Bot. 74: 1640–1650.
  75. Parker M.A., Doyle J.L., Doyle J.J. 2004. Comparative phylogeography of Amphicarpaea legumes and their rootnodule symbionts in Japan and North America. – J. Biogeogr. 31: 425–434.
  76. Parrish T.L., Koelewijn H.P., van Dijk P.J., Kruijt M. 2003. Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. – Biotropica 35 (3): 333–343. https://doi.org/10.1111/j.1744-7429.2003.tb00587.x
  77. Peto F.H. 1938. Cytology of poplar species and natural hybrids. – Can. J. Res., 16 (11): 445–455.
  78. Prančl J., Fehrer J., Caklová P., Bambasová V., Lučanová M., Kaplan Z. 2020. Intricate evolutionary history of Callitriche (Plantaginaceae) taxa elucidated by a combination of DNA sequencing and genome size. – Taxon. 69 (5): 1016-1041. https://doi.org/10.1002/tax.12315
  79. Prančl J., Kaplan Z., Trávníček P., Jarolímová V. 2014. Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae). – PLoS ONE. 9 (9): e105997. https://doi.org/10.1371/journal.pone.0105997
  80. Prančl J., Koutezky P., Travniček P., Jarolímová V., Lučanová M., Koutecka E., Kaplan Z. 2018. Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. – Preslia 90: 195–223.
  81. Preston C.D., Pearman D.A. 2015. Plant hybrids in the wild: evidence from biological recording. – Biol. J. Linn. Soc. 115: 555–572.
  82. Punina E.O., Machs E.M., Krapivskaya E.E., Kim E.S., Mordak E.V., Myakoshina Y.A., Rodionov A.V. 2012. Interspecific hybridization in the genus Paeonia (Paeoniaceae): Polymorphic sites in transcribed spacers of the 45S rRNA genes as indicators of natural and artificial peony hybrids – Russian J. Genet. 48 (7): 684–697.
  83. Punina E.O., Shneyer V.S., Nosov N.N., Gnutikov A.A., Rodionov A.V. 2021. The importance of hybridization in the study of the biodiversity of flowering plants. – Problems of botany of South Siberia and Mongolia. 20 (2): 59–63. https://doi.org/10.14258/pbssm.2021120. EDN: UOIOLT.
  84. Ramirez B.W. 1974. Coevolution of Ficus and Agaonidae. – Ann. Mo. Bot. Garden. 61: 770–780. https://doi.org/10.2307/2395028
  85. Rieseberg L.H. 1997. Hybrid origins of plant species. – Annu. Rev. Ecol. Syst. 28:359–89.
  86. Rieseberg L.H., Ellstrand N.C., Arnold M. 1993. What can molecular and morphological markers tell us about plant hybridization. – Critical Reviews in Plant Sciences. 12: 213–241.
  87. Rieseberg L.H., Wood T.E., Baack E. J. 2006. The nature of plant species. – Nature 440: 524–527.
  88. Rodionov A.V. 2022. Tandem duplications, eupolyploidy and secondary diploidization – genetic mechanisms of plant speciation and progressive evolution. – Turczaninowia. 25 (4): 87–121. https://doi.org/10.14258/turczaninowia.25.4.12
  89. Rodionov A.V., Amosova A.V., Belyakov E.A., Zhurbenko P.M., Mikhailova Yu. V., Punina E.O., Shneyer V.S., Loskutov I.G., and Muravenko O.V. 2019. Genetic Consequences of Interspecific Hybridization, Its Role in Speciation and Phenotypic Diversity of Plants. – Genetika. 55 (3): 255–272. https://doi.org/10.1134/S0016675819030159
  90. Rodionov A.V., Shneyer V.S., Gnutikov A.A., Nosov N.N., Punina E.O., Zhurbenko P.M., Loskutov I.G., and Muravenko O.V. 2020. Species dialectics: from initial uniformity, through the greatest possible diversity to ultimate uniformity. – Botanicheskii Zhurnal. 105 (9): 835–853. https://doi.org/10.31857/S0006813620070091
  91. Sang T., Crawford D.J., Stuessy T.F. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA; implications for biogeography and concerted evolution. – Proc. Natl. Acad. Sci. U.S.A. 92 (15): 6813–6817.
  92. Sang T., Zhong Y. 2000. Testing hybridization hypotheses based on incongruent gene trees. – Syst. Biol. 49 (3): 422–434.
  93. Smirnov S., Skaptsov M., Shmakov A., Fritsch R.M., Friesen N. 2017. Spontaneous hybridization among Allium tulipifolium and A. robustum (Allium subg. Melanocrommyum, Amaryllidaceae) under cultivation. – Phytotaxa, 303 (2): 155–164.
  94. Smith D.M., Levin D.A. 1963. A Chromatographic Study of Reticulate Evolution in the Appalachian Asplenium Complex. – Amer. J. Bot. 50 (9): 952–958.
  95. Soltis D.E., Kuzoff R.K. 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). – Evolution. 49: 727–742.
  96. Stace C.A. 1984. Chromosome numbers of British plants, 7. – Watsonia 15: 38–39.
  97. Stace C.A. 2010. New flora of the British Isles, 3 edn. Cambridge: Cambridge University Press. 1266 p.
  98. Stace C.A., Preston C.D., Pearman D.A. 2015. Hybrid flora of the British Isles. Bristol: Botanical Society of Britain and Ireland. 500 p.
  99. Surveswarana S., Gowdab V., Mei Sun M. 2018. Using an integrated approach to identify cryptic species, divergence patterns and hybrid species in Asian ladies’ tresses orchids (Spiranthes, Orchidaceae). – Mol. Phyl. Evol. 124: 106–121.
  100. Sweigart A.L., Martin N.H., Willis J.H. 2008. Patterns of nucleotide variation and reproductive isolation between a Mimulus allotetraploid and its progenitor species. – Molec. Ecol. 17: 2089–2100. https://doi.org/10.1111/j.1365-294X.2008.03707.x
  101. Taylor L.A. L., Mcnair J.N., Guastello P., Pashnick J., Thum R.A. 2017. Heritable variation for vegetative growth rate in ten distinct genotypes of hybrid watermilfoil. – J. Aquat. Plant Manag. 55: 51–57.
  102. Trusty J.L., Lockaby B.G., Zipperer W.C., Goertzen L.R. 2007. Identity of naturalised exotic Wisteria (Fabaceae) in the south-eastern United States. – Weed Research. 47: 479–487. https://doi.org/10.1111/j.1365-3180.2007.00587.x
  103. Tsai L., Hayakawa H., Fukuda T., Yokoyama J. 2015. A breakdown of obligate mutualism on a small island: an interspecific hybridization between closely related fig species (Ficus pumila and Ficus thunbergii) in western Japan. – Am. J. Plant Sci. 6 126–131. https://doi.org/10.4236/ajps.2015.61014
  104. Tschermak E. 1907. The importance of hybridization in the study of descent. Report of the Third International Conference 1906 on Genetics: Hybridisation (the Cross-breeding of Genera or Species), the Cross-breeding of Varieties, and General Plant-breeding Ed.W. Wilks, Royal Horticultural Society, 1907. P. 278–284.
  105. Tsvelev N.N. 2000. Opredelitel’ sosudistykh rasteniy Severo-Zapadnoy Rossii (Leningradskaya, Pskovskaya i Novgorodskaya oblasti) [Key to vascular plants of North-Western Russia (Leningrad, Pskov and Novgorod regions)]. – St. Petersburg. 781 s.
  106. Wang J., Fu C.N., Mo Z.Q., Möller M., Yang J.B., Zhang Z.R., Li D.Z., Gao L.M. 2022. Testing the complete plastome for species discrimination, cryptic species discovery and phylogenetic resolution in Cephalotaxus (Cephalotaxaceae). – Frontiers in Plant Science, 13: 768810.
  107. Whitney K.D., Ahern J.R., Campbell L.G., Albert L.P., King, M.S. 2010. Patterns of hybridization in plants. – Perspect. Plant Ecol. Evol. Syst. 12: 175–182. https://doi.org/10.1016/j.ppees.2010.02.002
  108. Wiegleb G., Kaplan Z. 1998. An account of the species of Potamogeton L. (Potamogetonaceae). – Folia Geobot. 33: 241–316.
  109. Xiao Y.-E., Yu F.-Y., Zhou X.-F. 2021. A new natural hybrid of Iris (Iridaceae) from Chongqing, China. – PhytoKeys. 174:1–12. https://doi.org/10.3897/phytokeys.174.62306
  110. Zalapa J.E., Brunet J., Guries R.P. 2010. The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). – Evolutionary Applications. 3 (2): 157–168. https://doi.org/10.1111/j.1752-4571.2009.00106.x
  111. Zalewska-Gałosz J., Kaplan Z., Kwolek D. 2018. Reinterpretation of Potamogeton ×nerviger: solving a taxonomic puzzle after two centuries. – Preslia. 90: 135–149. https://doi.org/10.23855/preslia.2018.135

Copyright (c) 2023 В.С. Шнеер, Е.О. Пунина, В.В. Домашкина, А.В. Родионов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies