Structure of Needle Mesophyll in the Genus Larix Species (Pinaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure of needle mesophyll and the forms of assimilative cells in the genus Larix species are discussed on the example of L. gmelini var. gmelini, L. decidua, L. kaempferi and L. sibirica. Needle samples were fixed in the Gammalund’s mixture. The study of the mesophyll was carried out on transverse, paradermal and radial sections of the middle part of the needles using a light microscope. To clarify the shape of chlorenchyma cells, macerated preparations were used. It is shown that the needle mesophyll in Larix species mainly consists of large cells of complex shape, which touch their convex parts or ends to form a well-developed system of intercellular spaces, which may comtribute to intense gas exchange. Different variants of flat folded, flat cellular and more complicated folded-cellular assimilative cells are described. The flat folded cells are characterized by a variety of lobed configurations on transverse sections and elongated oval projections on radial sections. The flat cellular cells are found on needle longitudinal sections of and consist of cellular links facing both perpendicular (cellular cells of the first group) and parallel (cellular cells of the second group) to the leaf surface. The folded-cellular cells combine transverse folded contours and longitudinal cellular outlines. In the needle mesophyll of the studied Larix species, weak differentiation into palisade and spongy parenchyma is observed; the cells of the middle part (median cells) are additionally distinguished between them. The palisade tissue is formed mainly by cellular cells of the first group, the spongy tissue by cellular cells of the second group. The median cells are located on both sides of the vascular bundle along a large needle radius; they can be either flat and slightly folded, or folded-cellular. The studied Larix species are similar in th esize of assimilative cells and the structure of the needle mesophyll; the main differences between them are related to the features of cell dissection both in transverse and longitudinal directions.

About the authors

G. K. Zvereva

Novosibirsk State Pedagogical University ; Siberian Federal Research Center of Agrobiotechnologies of RAS

Author for correspondence.
Email: labsp@ngs.ru
Russia, 630126, Novosibirsk, Vilyuyskaya Str., 28; Russia, 630501, Novosibirsk, Krasnoobsk

References

  1. Bercu R., Popoviciu D.R. 2013. Anatomical comparative study of Larix deciduas Mill. and Picea abies (L.) Karsten (Pinaceae) leaf. – Annals of R.S.C.B. 18 (2): 172–175.
  2. Berezina O.V., Korchagin Yu.Yu. 1987. On the method of leaf mesostructure evaluation in the species of the genus Triticum (Poaceae) in connection with structural features of its chlorophyll bearing cells. – Bot. Zhurn. 72 (4): 535–541 (In Russ.).
  3. Bobrov E.G. 1972. Istorija i sistematika listvennits [History and systematics of larches]. – Komarovskie chtenija. 25. Leningrad. 96 р. (In Russ.).
  4. Bobrov E.G. 1978. Lesoobrazuyushchie khvoynye SSSR [Forest-forming conifers of the USSR]. Leningrad. 189 p. (In Russ.).
  5. Derev’ja i kustarniki SSSR. Dikorastushchie, kul’tiviruemye i perspektivnye dlya introduktsii. I. Golosemennye [Trees and shrubs of the USSR. Wild-growing, cultivated and promising for introduction. I. Gymnosperms]. 1949. Moscow – Leningrad. 463 p. (In Russ.).
  6. Dylis N.V. 1961. Listvennitsa Vostochnoy Sibiri i Dal’nego Vostoka. Izmenchivost’ i prirodnoe raznoobrazie [Larch of Eastern Siberia and the Far East. Variability and natural diversity]. Moscow. 210 р. (In Russ.).
  7. Egorova N.N., Kulagin A.A. 2007. Osobennosti stroeniya assimilyatsionnykh organov lesoobrazujushchikh vidov v tekhnogennykh usloviyakh [Features of the structure of assimilative organs of forest-forming species in technogenic conditions]. – Samarskaya Luka. 16 (3): 463–476 (In Russ.).
  8. Eguchi N., Fukatsu E., Funada R., Tobita H., Kitao M., Maruyama Y., Koike T. 2004. Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high CO2 concentration. – Photosynthetica. 42 (2):173–178.
  9. Eremin V.M., Chavchavadze E.S. 2015. Anatomiya vegetativnykh organov sosnovykh (Pinaceae Lindl.) [Anatomy of pine vegetative organs (Pinaceae Lindl.)]. Brest. 691 р. (In Russ.).
  10. Eremin V.M., Zerkal’ S.V. 2002. Sravnitel’naya anatomiya lista sosnovykh [Comparative anatomy of the leaf of pine family]. Brest. 182 р. (In Russ.).
  11. Esau K. 1980. Anatomiya semennykh rasteniy. Kn. 2 [Anatomy of seed plants. Book 2]. Moscow. 558 р. (In Russ.).
  12. Farjon A. 2001. World Checklist and Bibliography of Conifers. 2nd ed. Royal Botanic Garden, Kew. 309 p.
  13. Grodzinskij А.M., Grodzinskij D.M. 1973. Kratkiy spravochnik po fiziologii rasteniy. [Brief guide on plant physiology]. Kiev. 591 p. (In Russ.).
  14. Ivanova L.А., P’yankov V.I. 2002. Strukturnaya adaptatsiya mezofilla lista k zateneniyu [Structural adaptation of leaf mesophyll to shading]. – Fiziologiya rasteniy. 49 (3): 467–480 (In Russ.).
  15. Karaseva M.A., Karasev V.N., Matorkin A.A. 2003. Fiziologicheskaya otsenka ustoychivosti listvennitsy sibirskoy v srednem Povolzh’e [Physiological assessment of the stability of Siberian larch in the Middle Volga region]. – Khvoynye boreal’noy zony. 21 (1): 27–35.
  16. Koropachinskij I.Yu., Vstovskaja T.N. 2002. Drevesnye rasteniya Aziatskoy Rossii [Woody plants of Asian Russia]. Novosibirsk. 707 р. (In Russ.).
  17. Miljutin L.I. 2003. Bioraznoobrazie listvennits Rossii [Biodiversity of larch trees in Russia]. – Khvoynye boreal’noy zony. 21 (1): 6–9 (In Russ.).
  18. Nesterovich N.D., Derjugina T.F., Luchkov A.I. 1986. Strukturnye osobennosti list’ev khvoynykh [Structural features of coniferous leaves]. Minsk. 143 р. (In Russ.).
  19. Nobel P.S., Zaragoza L.J., Smith W.K. 1975. Relation between mesophyll surface area, photosynthetic rate and illumination level during development for leaves of Plectrantus parviflorus Henkel. – Plant Physiology. 55: 1067–1070.
  20. Patton L., Jones M.B. 1989. Some relationships between leaf anatomy and photosynthetic characteristics of willow. – New Phytologist. 111 (4): 657–661.
  21. Possingham J.V., Saurer W. 1969. Changes in chloroplast number per cell during leaf development in spinach. – Planta. 86 (2): 186–194.
  22. Shherbatjuk A.S., Rusakova L.V., Suvorova G.G., Jan’kova L.S. 1991. Uglekislotnyy gazoobmen khvoynykh Predbaykal’ya [Carbon dioxide gas exchange in coniferous Cisbaikalia]. Novosibirsk. 135 р. (In Russ.).
  23. Slaton M.R., Smith W.K. 2002. Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species. – Int. J. Plant Sci. 163 (6): 937–948. https://doi.org/10.1086/342517
  24. Smith W.K., Vogelmann T.C., Delucia E.H., Bell D.T., Shepherd K.A. 1997. Leaf form and photosynthesis. – BioScience. 47 (11): 785–793.
  25. Suvorova G.G. 2009. Fotosintez khvoynykh derev’ev v usloviyakh Sibiri [Photosynthesis of coniferous trees in Siberia]. Novosibirsk. 195 р. (In Russ.).
  26. Suvorova G.G., Popova E.V. 2015. Fotosinteticheskaya produktivnost' khvoynykh drevostoev Irkutskoy oblasti [Photosynthetic productivity of coniferous stands of the Irkutsk region]. Novosibirsk. 95 р. (In Russ.).
  27. Tonkoshtan L.A. 1963. Anatomicheskoe stroenie khvoi osnovnykh drevesnykh porod Krasnoyarskogo kraya [Anatomical structure of the needles of the main tree species of the Krasnoyarsk region]. – Trudy Instituta lesa i drevesiny AN SSSR. 65: 118–127 (In Russ.).
  28. Zagirova S.V. 2004. Structure and function of photosynthetic system of conifers in spruce phytocenosis. – Bot. Zhurn. 89 (11): 1795–1804 (In Russ.).
  29. Zagirova S.V. 2014. Struktura, soderzhanie pigmentov i fotosintez khvoi listvennitsy sibirskoy na Severnom i Pripolyarnom Urale [Structure, pigment content, and photosynthesis of Siberian larch needles in Northern and Sub-arctic Urals]. – Lesovedenie. 3: 3–10 (In Russ.).
  30. Zvereva G.K. 2009. Spatial organization of the leaf blade mesophyll in festucoid grasses (Poaceaе) and its ecological significance. – Bot. Zhurn. 94 (8): 1204–1215 (In Russ.).
  31. Zvereva G.K. 2020. Cells of complex form in chlorenchyma in plants of the families Poaceae and Pinaceae. – Rastitel’nyy mir Aziatskoy Rossii. 1 (37): 11–17 (In Russ.). https://doi.org/10.21782/RMAR1995-2449-2020-1(11-17)
  32. Zvereva G.K., Urman S.A. 2010. Prostranstvennaya organizatsiya mezofilla v list’yakh nekotorykh khvoynykh (Pinaceae) [The spatial organization of mesophyll in leaves of some coniferous (Pinaceae)]. – Vestnik Tomskogo gosudarstvennogo universiteta. 333: 164–168 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (177KB)
3.

Download (151KB)
4.

Download (337KB)
5.

Download (187KB)
6.

Download (303KB)
7.

Download (1MB)
8.

Download (39KB)

Copyright (c) 2023 Г.К. Зверева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies