ON THE POSSIBILITY OF INFLUENCE OF CELL SURFACE RELIEF ON STOMATAL MOVEMENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Folds are often present on the surface of stomatal complex cells. This allows us to assume that the folds influence stomatal movements. To evaluate the validity of this assumption, the stomatal complexes with various surface reliefs of their cells were studied, namely the complexes with lateral folds, with marginal stomatal rings, with rings of ledges, with peristomatal rims, as well as those with folds located on subsidiary and ordinary epidermal cells without any obvious order, in Acokanthera oblongifolia, Acokanthera oppositifolia, Prunus laurocerasus, Populus tremula, Osmanthus yunnanensis, Raphiolepis ×delacourii, and Ternstroemia gymnanthera. In all the studied species, stomatal deformations depending on the presence of microrelief folds were observed. Since deformation processes are the basis of stomatal movements, it is possible to conclude that surface folds of stomatal complex cells are structural features of these cells capable of influencing the mechanics of stomatal movements.

About the authors

A. A. Pautov

St. Petrsburg State University

Author for correspondence.
Email: a.pautov@spbu.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

E. G. Krylova

St. Petrsburg State University

Email: a.pautov@spbu.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

Yu. O. Sapach

St. Petrsburg State University

Email: a.pautov@spbu.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

O. V. Yakovleva

V.L. Komarov Botanical Institute RAS

Email: a.pautov@spbu.ru
Russia, 197022, St. Petersburg, Prof. Popov Str., 2

K. A. Akhmetgaleeva

St. Petrsburg State University

Email: a.pautov@spbu.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

I. A. Pautova

V.L. Komarov Botanical Institute RAS

Email: a.pautov@spbu.ru
Russia, 197022, St. Petersburg, Prof. Popov Str., 2

References

  1. Aylor D.E., Parlange J.-Y., Krikorian A.D. 1973. Stomatal mechanics. – Am. J. Bot. 60 (2): 163–171. https://doi.org/10.1002/j.1537-2197.1973.tb10213.x
  2. Digiuni S., Berne-Dedieu A., Martinez-Torres C., Szecsi J., Bendahmane M., Arneodo A., Argoul F. 2015. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves. – Biophys. J. 108 (9): 2235–2248. https://doi.org/10.1016/j.bpj.2015.02.024
  3. Fischer R.A. 1968. Stomatal opening: role of potassium uptake by guard cells. – Science. 160: 784–785.
  4. Forouzesh E., Goel A., Mackenzie S.A., Turner J.A. 2013. In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. – Plant J. 73 (3): 509–520. https://doi.org/10.1111/tpj.12042
  5. Franks P.J., Farquhar G.D. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. – Plant Physiol. 143: 78–87. https://doi.org/10.1104/pp.106.089367
  6. Guttenberg H. 1959. Die physiologische Anatomie der Spaltöffnungen. Handb. – Pflanzen Physiol. 17: 399–414.
  7. Jordan G.J., Weston P.H., Carpenter R.J., Dillon R.A., Brodribb T.J. 2008. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. – Am. J. Bot. 95: 521–530. https://doi.org/10.3732/ajb.20073 33
  8. Jost L. 1907. Lectures on plant physiology. Oxford. 564 p.
  9. Koch K., Bhushan B., Barthlott W. 2009. Multifunctional surface structures of plants: an inspiration for biomimetics: invited review. – Prog. Mater. Sci. 54: 137–178. http://dx.doi.org/10.1016/j.pmatsci.2008.07.003
  10. Outlaw W.H. 1983. Current concepts on the role of potassium in stomatal movements. – Physiol Plant. 59: 302–311.
  11. Pautov A., Bauer S., Ivanova O., Krylova E., Sapach Yu., Gussarova G. 2017. Role of the outer stomatal ledges in the mechanics of guard cell movements. – Trees –Structure and Function. 31 (1): 125–135. https://doi.org/10.1007/s00468-016-1462-x
  12. Pautov A., Bauer S., Ivanova O., Krylova E., Yakovleva O.V., Sapach Yu., Pautova I. 2019. Influence of stomatal rings on movements of guard cells. – Trees – Structure and Function. 33 (5): 1459–1474. https://doi.org/10.1007/s00468-019-01873-y
  13. Pautov A., Sapach Yu., Truchmanova G.R., Yakovleva O.V., Krylova E.G., Pautova I.A. 2022. Structural diversity of stomatal rings and peristomatal rims. – Bot. Zhurn. 107 (9): 869–884. https://doi.org/10.31857/S0006813622090083
  14. Radotić K., Roduit Ch., Simonović J., Hornitschek P., Fankhauser Ch., Mutavdžić D., Steinbach G., Dietler G., Kasas S. 2012. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. – Biophys. J. 103 (3): 386–394. https://doi.org/10.1016/j.bpj.2012.06.046
  15. Raschke K. 1975. Stomatal action. – Annu. Rev. Plant Physiol. 26: 309–340.
  16. Reynolds E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. – J. Cell Biol. 17: 208–212.
  17. Roth-Nebelsick A., Fernández V., Peguero-Pina J.J., Sancho-Knapik D., Gil-Pelegrín E. 2013. Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.). – Plant Cell Environ. 36 (3): 579–589. https://doi.org/10.1111/j.1365-3040.2012.02597.x
  18. Roth-Nebelsick A., Hassiotou F., Veneklaas E.J. 2009. Stomatal crypts have small effects on transpiration: a numerical model analysis. – Plant Physiol. 151: 2018–2027. http://dx.doi.org/10.1104/pp.109.146969
  19. Santelia D., Lawson T. 2016. Rethinking Guard Cell Metabolism. – Plant Physiol. 172: 1371–1392. https://doi.org/10.1104/pp.16.00767
  20. Stace C.A. 1965. Cuticular studies as an aid to plant taxonomy. – Bull. Br. Mus. (Nat. Hist.). 4 (1): 1–78.
  21. Wilkinson H.P. 1979. The plant surface (mainly leaf). – In: Anatomy of the dicotyledons. Ed. 2. Vol. I. Oxford. P. 97–117.
  22. Woolfenden H.C., Bourdais G., Kopischke M., Miedes E., Molina A., Robatzek S., Morris R.J. 2017. A computational approach for inferring the cell wall properties that govern guard cell dynamics. – Plant J. 92: 5–18. https://doi.org/10.1111/tpj.13640

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (2MB)
4.

Download (3MB)
5.

Download (3MB)

Copyright (c) 2023 А.А. Паутов, Е.Г. Крылова, Ю.О. Сапач, О.В. Яковлева, К.А. Ахметгалеева, И.А. Паутова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies