POLLEN MORPHOLOGY OF SOME PLANTS FROM THE GYZMEIDAN MUD VOLCANO (REPUBLIC OF AZERBAIJAN)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study was to assess the influence of unfavorable conditions of the mud volcano on the morphological features of pollen. Using light, scanning and transmission electron microscopes, the morphology of pollen of 20 species from 14 families of dicotyledonous plants growing on the Gyzmeidan mud volcano (Shamakhi) in the Republic of Azerbaijan has been studied. According to the aperture patterns of the pollen grains in the studied species, there are 5 pollen types: 3-colpate (Brassicaceae, Convolvulaceae, Fabaceae (Hedysarum sericeum), Lamiaceae, Linaceae), 3-colporate (Asteraceae, Cistaceae, Clusiaceae, Euphorbiaceae, Fabaceae, Rosaceae), stepanocolporate (Polygalaceae), heteroaperturate (Boraginaceae), pantoporate (Ranunculaceae).

No significant deviations of the main morphological features of pollen (shape, outline, size of pollen grains, type and number of apertures, exine sculpture, thickness and ultrastructure of the sporoderm) were found. Most of the studied species have a low percentage of deformed, underdeveloped, morphologically sterile, and atypical pollen grains. The number of deformed pollen grains differs between taxa. It can vary from single grains (most of the studied samples) to 56% in Potentilla pedata. However, its plants from the mud volcano produce less deformed pollen than the control ones (88%). This is most likely a feature of the taxon, rather than the influence of growing conditions.

About the authors

Sh. G. Isayeva

Institute of Botany of Ministry of Sciences and Education of Republic of Azerbaijan

Author for correspondence.
Email: isayeva.shabnam@outlook.com
Azerbaijan, Baku, Badamdar, 40

V. V. Grigoryeva

Komarov Botanical Institute RAS

Author for correspondence.
Email: mikhailov_val@mail.ru
Russia, 197376, , St. Petersburg, Prof. Popov Str., 2

References

  1. Abbasov O.R., Mammadova A.N., Akhundov R.V., Baloglanov E.E., Huseynov A.R., Yagubov A.R. 2015. Atlas of the World Mud Volcanoes. Baku. P. 44.
  2. Akhmedov A.G. Mud volcanoes and the environment. Baku. 49 p. (In Russ.).
  3. Albooghobaich N., Zarinkamar F. 2011. Effect of lead toxicity on pollen grains in Matricaria chamomilla. – In: IPCBEE. Vol. 5. P. 292–295.
  4. Aliev Ad.A. 2006. Mud volcanism of the South Caspian oil and gas basin. – Geology and minerals of the World Ocean. 3: 35–51 (In Russ.).
  5. Amjad L., Shafighi M. 2010. Effect of electromagnetic fields on structure and pollen grain development in Chenopodium album L. – International Journal of Bioengineering and Life Sciences. 4 (10): 763–765.
  6. Batygina T.B., Vasileva V.E. 1999. Razmnozhenie rasteniy. [Reproduction of plants]. St. Petersburg. 230 p.
  7. Dhingra H.R., Varghese T.M. 1993. Flowering and male reproductive functions ofchickpea (Cicer arietinum L.) genotypes as affected by salinity. – Biol. Plantarum. 35 (3): 447–452.
  8. Dzyuba O.F. 2006. Palynoindication of the environmental quality. St. Petersburg. [Palinoindication of environmental quality]. 197 p. (In Russ.).
  9. Dzyuba O.F., Shrekova O.V., Tokarev P.I. 2006. On the natural polymorphism of pollen grains of Acer tataricum L. – Paleontol. J. 40 (5): 590–594.
  10. Erdtman G. 1952. Pollen morphology and taxonomy. Angiosperms. Stockholm. 539 p.
  11. Flora URSS. 1937, 1939, 1945, 1946, 1948, 1949, 1953, 1954, 1961, 1962, 1963. Vol. 7, 8, 11–15, 19, 20, 26–28. Moscow, Leningrad.
  12. Grigoryeva V.V., Korobkov A.A., Britsky D.A., Mikhaylova L.V. 2015. Pollen morphology in representatives of the subtribe Anthemideae (Asteraceae). – Bot. Zhurn. 100 (10): 1040–1047 (In Russ.). https://doi.org/10.1134/S000681361510004X
  13. Grigoryeva V.V., Britski D.A., Korobkov A.A. 2018.Pollen morphology of Artemisia species (Asteraceae) of the Russian Far East. – Bot. Zhurn. 103 (10): 1255–1264 (In Russ.). https://doi.org/10.7868/S0006813618100046
  14. Grossgeim A.A. Flora of the Caucasus. 2nd edition. 1950, 1952, 1962. Т. IV, V, VI. Leningrad.
  15. Gull H., Achmad R. 2006. Effect of salinity on pollen viability of different canola (Brassica napus L.) cultivars as reflected by the formation of fruits and seeds. – Pak. J. Bot. 38 (2): 237–247.
  16. Humphrey R.P. 2016. Pollen heteromorphism is pervasive in Thalictrum (Ranunculaceae). – Plant Syst. Evol. 302 (8): 1171–1177. https://doi.org/10.1007/s00606-016-1312-8
  17. Kamel M.A., El Hadidy A.M.H., Hamed S.T., Hussein N.R.A. 2018. A Palynological Review for Some Species of Family Boraginaceae Juss. from the Egyptian Flora. – Annual Research and Review in Biology. 30 (3): 1–16. https://doi.org/10.9734/ARRB/2018/46408
  18. Kluza-Wieloch M., Maciejewska-Rutkowska I., Wójtowicz W., Wiland-Szymańska J. 2015. Pollen morphology of rare species of Linum L. (Linaceae) from Poland. – Biodiv. Res. Conserv. 40: 1–12. https://doi.org/10.1515/biorc-2015-0028
  19. Kupriyanova L.A., Aleshina L. 1972. Pollen and spores of plants from European part of URSS. Vol. 1. Leningrad. 172 p. (In Russ.).
  20. Marzouk R.I., El-Darier S.M., Askar A.B.M. 2017. Pollen morphology of Teucrium L. (Lamiaceae, Ajugoideae) in Libya. – Bangladesh J. Plant Taxon. 24 (2): 219–226.
  21. Nilan R.A., Rosichan J.L., Arenaz P., Hodgdon A.L., Kleinhofs A. 1981. Pollen genetic markers for detection of mutagens in the environment. – Environ Health Perspect. 37: 19–25. https://doi.org/10.1289/ehp.813719
  22. PalDat – Palynological Database, an online publication on recent pollen. https://www.paldat.org/
  23. Pire S.M., Dematteis M. 2007. Pollen aperture heteromorphism in Centaurium pulchellum (Gentianaceae). – Grana. 46 (1): 1–12. https://doi.org/10.1080/00173130601101245
  24. Pozhidaev A.E. 1993. Polymorphism of pollen in the genus Acer (Aceraceae). Isomorphism of deviant forms of Angiosperm pollen. – Grana. 32 (2): 79–85.
  25. Pozhidaev A.E. 1995. Pollen morphology of the genus Aesculus (Hippocastanaceae). Patterns in the variety of morphological characteristics. – Grana. 34 (1): 10–20.
  26. Pozhidaev A.E. 1998. Hypothetical way of pollen aperture patterning. 1. Formation of 3-colpate patterns and endoaperture geometry. – Rev. Palaeobot. Palynol. 104 (1): 67–83.
  27. Pozhidaev A.E. 2000. Hypothetical way of pollen aperture patterning. 2. Formation of polycolpate patterns and pseudoaperture geometry. – Rev. Palaeobot. Palynol. 109 (3–4): 235–254. https://doi.org/10.1016/s0034-6667 (99)00057-3
  28. Sánchez Agudo J.A., Rico E., Sánchez Sánchez J. 1998. Palynological study of Potentilla subg. Potentilla (Rosaceae) in the Western Mediterranean. – Grana. 37 (5): 276–284. https://doi.org/10.1080/00173139809362679
  29. Shivanna K.R., Linskens H.F., Cresti M. 1991. Pollen viability and pollen vigor. – Theoret. Appl. Genetics. 81 (1): 38–42. https://doi.org/10.1007/BF00226109
  30. Shishova M., Puzanskiy R., Gavrilova O., Kurbanniazov S., Demchenko K., Yemelyanov V., Pendinen G., Shavarda A., Gavrilenko T. 2019. Metabolic Alterations in Male-Sterile Potato as Compared to Male-Fertile. Metabolites. 9 (2): 24. https://doi.org/10.3390/metabo9020024
  31. Tekin M., Yilmaz G. 2016. Palynological Studies of the Genus Convolvulus L. (Convolvulaceae) from Turkey. – Botanical Sciences. 94 (3): 543–549.
  32. Yeloff D., Blokker P., Boelen P. Rozema J. 2008. Is pollen morphology of Salix polaris affected by enhanced uv-b irradiation? Results from a Field Experiment in High Arctic Tundra. – Arctic, Antarctic, and Alpine Research. 40 (4): 770–774. https://doi.org/10.1657/1523-0430(07-045)[YELOFF]2.0.CO;2

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (2MB)
4.

Download (2MB)
5.

Download (2MB)

Copyright (c) 2023 Ш.Г. Исаева, В.В. Григорьева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies