The Use of the Bioluminescent Enzyme Bioassay for the Analysis of Saliva of Railway Transport Workers to Monitor the Functional State of the Body in the Conditions of Labor Activity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper proposes bioluminescent enzymatic assay of saliva as a non-invasive method for monitoring the functional state of the body. The value of luminescence intensity from coupled enzyme-based reaction catalyzed by NADH:FMN oxidoreductase and luciferase, when exposed to saliva, served as an indicator of the state of the body of workers at work. The absence of a significant difference between profiles of bioluminescence before and after the shift and no changes in biochemical, physical and chemical parameters of saliva indicated that the bodies had adapted to a workload. An increased bioluminescent intensity value is typical for workers in a state of chronic fatigue, a decreased one points to the presence of chronic diseases and bad habits. The dependence of the bioluminescent intensity value on the concentration of lactate, lipid peroxidation products, ionic and mineral composition, the values of free radical oxidation and antiradical protection was identified. Thus, the dependence of the saliva constituents on conditions of life and health status of workers can be identified using bioluminescent enzyme bioassay that is suitable for rapid monitoring of the body at work.

作者简介

L. Stepanova

Siberian Federal University

Email: slyudmila@mail.ru
Krasnoyarsk, Russia

O. Kolenchukova

Siberian Federal University; Scientific Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences; Krasnoyarsk State Agrarian University

Krasnoyarsk, Russia; Krasnoyarsk, Russia; Krasnoyarsk, Russia

G. Zhukova

Siberian Federal University

Krasnoyarsk, Russia

O. Sutormin

Siberian Federal University; Surgut State University

Krasnoyarsk, Russia; Surgut, Russia

V. Kratasyuk

Siberian Federal University; Institute of Biophysics, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia; Krasnoyarsk, Russia

参考

  1. Klaassens E. R., Giltay E. J., van Veen T., Veen G., and Zitman F. G. Trauma exposure in relation to basal salivary cortisol and the hormone response to the dexamethasone/CRH test in male railway employees without lifetime psychopathology. Psychoneuroendocrinology, 35 (6), 878–886 (2010). doi: 10.1016/j.psyneuen.2009.11.012
  2. Бельская Л. В. и Сарф Е. А. Биохимические методы исследования слюны в лабораторной диагностике (ИНТЕХ, Омск, 2013).
  3. Neyraud E., Palicki O., Schwartz C., Nicklaus S., and Feron G. Variability of human saliva composition: Possible relationships with fat perception and liking. Arch. Oral Biol., 57 (5), 556–566 (2012). doi: 10.1016/j.archoralbio.2011.09.016
  4. Бельская Л. В. и Сарф Е. А. Околосуточная динамика состава слюны человека по данным ИК-Фурье-спектроскопии. Клиническая лабораторная диагностика, 63 (5), 277–281 (2018). doi: 10.18821/0869-2084-2018-63-5-277-281
  5. Bel’skaya L. V. Application of capillary electrophoresis to determine the mineral composition of human salvia. Bull. Sci. & Practice, 2 (15), 132–140 (2017). doi: 10.5281/zenodo.291849
  6. Бельская Л. В., Голованова О. А., Шукайло Е. С. и Турманидзе В. Г. Экспериментальное исследование кристаллизации биологических жидкостей. Вестн. Отделения наук о Земле РАН, 3, NZ6012 (2011). doi: 10.2205/2011NZ000142
  7. Турлак И. В. Слюна – основные направления исследования ее свойств. Современные проблемы науки и образования, 4, (2020). https://s.science-education.ru/pdf/2020/4/29934.pdf (cсылка активна на 02.05.2024).
  8. de Kloet C. S., Vermetten E., Heijnen C. J., Geuze E., Lentjes E. G., and Westenberg H. G. Enhanced cortisol suppression in response to dexamethasone administration in traumatized veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology, 32 (3), 215–226 (2007). doi: 10.1016/j.psyneuen.2006.12.009
  9. Yao Y., Li H., Wang D., Liu C., and Zhang C. An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst, 142 (19), 3715–3724 (2017). doi: 10.1039/C7AN01008G
  10. Bellagambi F. G., Baraket A., Longo A., Vatteroni M., Zine N., Bausells J., Fuoco R., Francesco F. D., Salvo P., Karanasiou G. S., Fotiadis D. I., Menciassi A., and Errachid A. Electrochemical biosensor platform for TNF-α cytokines detection in both artificial and human saliva: Heart failure. Sensors and Actuators B: Chemical, 251, 1026–1033 (2017). doi: 10.1016/j.snb.2017.05.169
  11. Soni A., Surana R. K., and Jha S. K. Smartphone based optical biosensor for the detection of urea in saliva. Sensors and Actuators B: Chemical, 269, 346–353 (2018). doi: 10.1016/j.snb.2018.04.108 0925-4005
  12. Shi W., Li J., Wu J., Wei Q., Chen C. Bao N., Yu C., and Gu H. An electrochemical biosensor based on multi-wall carbon nanotube–modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. Analytical and Bioanalytical Chemistry, 412 (26), 7275–7283 (2020). doi: 10.1007/s00216020-02860-w
  13. Ilea A., Andrei V., Feurdean C. N., Băbţan A. M., Petrescu N. B., Campian R. S., Boșca A. B., Ciui B., Tertiș M., Săndulescu R., and Cristea C. Saliva, a magic biofluid available for multilevel assessment and a mirror of general health – A systematic review. Biosensors (Basel), 9 (1) 27 (2019). doi: 10.3390/bios9010027
  14. Esimbekova E., Kratasyuk V., and Shimomura O. Application of Enzyme Bioluminescence in Ecology. In: Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology, Ed. by G. Thouand and R. Marks (Springer, Berlin, 2014), pp. 67–109. doi: 10.1007/978-3-662-43385-0_3
  15. Zhukova G. V., Kolenchukova O. A., Ryzhikova E. M., Stepanova L. V., and Kratasyuk V. A. Comprehensive assessment of the health of young people living in the Far North. Sib. J. Life Sci. & Agriculture, 14 (5), 226–245 (2022). doi: 10.12731/2658-6649-2022-14-5-226245
  16. Borshchevskaya L. N., Gordeeva T. L., Kalinina A. N., and Sineokii S. P. Spectrophotometric determination of lactic acid. J. Anal. Chem., 71 (8), 755–758 (2016). doi: 10.1134/S1061934816080037
  17. Bel’skaya L. V., Kosenok V. K., and Massard G. Endogenous intoxication and saliva lipid peroxidation in patients with lung cancer. Diagnostics, 6 (4), 39 (2016). doi: 10.3390/diagnostics6040039
  18. Винник Ю. С., Савченко А. А., Перьянова О. В., Теплякова О. В., Якимов С. В., Тепляков Е. Ю. и Мешкова О. С. Клинические аспекты применения хемилюминесцентного анализа. Сиб. мед. обозрение, 40 (3), 3–6 (2006).
  19. Chen J., Wu K., Cao W., Shao J., and Huang M. Association between monocyte to high-density lipoprotein cholesterol ratio and multi-vessel coronary artery disease: a cross-sectional study. Lipids Health Dis., 22, 121 (2023). doi: 10.1186/s12944-023-01897-x
  20. Мандра Ю. В., Каминская Л. А., Светлакова Е. Н., Гаврилов И. В., Жолондзиовский П. А. и Тимербулатов А. Д. Динамика изменения биохимического состава слюны под влиянием углеводсодержащих продуктов ≪Легкого питания≫. Проблемы стоматологии, 4, 10–16 (2016).
  21. Доценко М., Алексейчик Д., Панкратова Ю., Алексейчик С., Доценко К. и Санкович Е. Холестерин и иммунитет: клинико-иммунологические параллели. Наука и инновации, 4 (146), 58–64 (2015).
  22. Чемикосова Т. С. и Гуляева О. А. Отклонения в минеральном составе ротовой жидкости у рабочих производства хлорфеноксигербицидов. Проблемы стоматологии, 2, 3–7 (2005).
  23. Мартынов С. А. и Шамхалова М. Ш. Гиперфосфатемия при хронической болезни почек. Медицинский совет, 16, 72–78 (2019). doi: 10.21518/2079701X-2019-16-78-85
  24. Cichońska D., Kusiak A., Kochańska B., Ochocińska J., and Świetlik D. Influence of electronic cigarettes on selected physicochemical properties of saliva. Int. J. Environ. Res. Public Health, 19 (6), 3314 (2022). doi: 10.3390/ijerph19063314
  25. Franco-Martinez L., Tvarijonaviciute A., MartinezSubiela S., Marquez G., Martinez Diaz N., Cugat R., Ceron J. J., and Jimenez-Reyes P. Changes in lactate, ferritin, and uric acid in saliva after repeated explosive effort sequences. J. Sports Med. Phys. Fitness, 59 (6), 902–909 (2019). doi: 10.23736/S00224707.18.08792-3
  26. Shungu D. C., Weiduschat N., Murrough J. W., Mao X., Pillemer S., Dyke J. P., Medow M. S., Natelson B. H., Stewart J. M., and Mathew S. J. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed., 25 (9), 1073–1087 (2012). doi: 10.1002/nbm.2772
  27. Голубева В. Л., Белова В. В., Адеишвили Т. Ш., Белачеу И. А., Юрина Т. М. и Епифанова Н. Ю. Изменения белков крови в диагностике заболеваний пациентов разных возрастных групп. Актуальные проблемы медицины, 22 (117), 5–9 (2011).

版权所有 © Russian Academy of Sciences, 2004

##common.cookie##