The Nature of Intermolecular Interactions Affecting Oligomerization of Nt.BspD6I Nickase

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Knowledge of the nature of intermolecular interactions and amino acid residues unveiling their origin is necessary to enable alteration of the stability of intermolecular complexes. In this work, using Nt.BspD6I nickase as an example, it was shown that hydrophobic interactions have an influence on the protein’s ability to oligomerization and that chemical and geometric complementarity of external surfaces is a necessary condition for the formation of stable homo complexes.

Sobre autores

V. Antipova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

А. Yunusova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

R. Artyukh

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: rimmaartyukh@gmail.com
Pushchino, Russia

Bibliografia

  1. Огурцов А. Н. Введение в биофизику (НТУ ХПИ, Харьков, 2008).
  2. Огурцов А. Н. Основы молекулярной биологии: в 2-х ч. – Ч. 1. Молекулярная биология клетки (НТУ ХПИ, Харьков, 2010).
  3. Ogurtsov A. N. Molecular biophysics and enzymatic catalysis (NTU KhPI, Kharkiv, 2011).
  4. Zhang Q., Sanner M., and Olson A. J. Shape complementarity of protein-protein complexes at multiple resolutions. Prot. Struct. Funct. Bioinform., 75, 453–467 (2009). doi: 10.1002/prot.22256
  5. Santos J., Pujols J., Pallares I. Iglesias V., and Ventura S. Computational prediction of protein aggregation: Advances in proteomics, conformation-specific algorithms and biotechnological applications. Comput. Struct. Biotechnol. J., 18, 1403–1413 (2020). doi: 10.1016/j.csbj.2020.05.026
  6. Li Y., Zhang X., and Cao D. The role of shape complementarity in the protein-protein interactions. Sci. Rep., 3, 3–9 (2013). doi: 10.1038/srep03271
  7. Schechter A. N. Hemoglobin research and the origins of molecular medicine. Blood, 112, (10), 3927–3938 (2008). doi: 10.1182/blood-2008-04-078188
  8. Zheleznaya L. A., Perevyazova T. A., Alzhanova D. V., and Matvienko N. I. Site-specific nickase from bacillus species strain d6. Biochemistry (Moscow), 66, 989–993 (2001). doi: 10.1023/a:1012369525809
  9. Kachalova G. S., Rogulin E. A., Yunusova A. K., Artyukh R. I., Perevyazova T. A., Matvienko N. I., Zheleznaya L. A., and Bartunik H. D. Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit. J. Mol. Biol., 384, 489–502 (2008). doi: 10.1016/j.jmb.2008.09.033
  10. Artyukh R. I., Fatkhullin B. F., Kachalova G. S., Antipova V. N., Perevyazova T. A., and Yunusova A. K. Structural analysis of cysteine-free Nt.BspD6 nicking endonuclease and its functional features. Biochim. Biophys. Acta – Proteins Proteom, 1870 (3), 140756 (2022). doi: 10.1016/j.bbapap.2022.140756
  11. Artyukh R. I., Fatkhullin B. F., Antipova V. N., Perevyazova T. A., Kachalova G. S., and Yunusova A. K. Effect of reversion back to Cys11 on the structure and function of S11C Cys-free Nt.BspD6I. Crystallography Reports, 68 (6), 857–863 (2023). doi: 10.1134/S1063774523700384
  12. Rogulin E. A., Perevyazova T. A., Zheleznaya L. A., and Matvienko N. I. Plasmid pRARE as a vector for cloning to construct a superproducer of the site-specific nickase N.BspD6I. Biochemistry (Moscow), 69, 1123–1127 (2004). doi: 10.1023/B:BIRY.0000046886.19428.d5
  13. Hellman L. M. and Fried M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2 (8), 1849–1861 (2007). doi: 10.1038/nprot.2007.249
  14. Kuriata A., Iglesias V., Kurcinski M., Ventura S., and Kmiecik S. Aggrescan3D standalone package for structurebased prediction of protein aggregation properties. Bioinformatics, 35 (19), 3834 (2019). doi: 10.1093/bioinformatics/btz143
  15. Conchillo-Sole O., de Groot N. S., Aviles F. X., Vendrell J., Daura X., and Ventura S. AGGRESCAN: a server for the prediction and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinformatics, 8 (1), 65 (2007). doi: 10.1186/1471-2105-8-65
  16. Zambrano R., Jamroz M., Szczasiuk A., Pujols J., Kmiecik S., and Ventura S. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucl. Acids Res., 43 (W1), W306–W313 (2015). doi: 10.1093/nar/gkv359
  17. Sekerina S. A., Grishin A. V., Ryazanova A. Yu., Artyukh R. I., Rogulin E. A., Yunusova A. K., OretskayaT. S., Zheleznaya L. A., and Kubareva E. A. Oligomerization of sitespecific nicking endonuclease BspD6I at high protein concentrations. Russ. J. Bioorg. Chem., 38, 376–382 (2012). doi: 10.1134/s1068162012040127
  18. Acuner Ozbabacan S. E., Engin H. B., Gursoy A., and Keskin O. Transient protein-protein interactions. Protein Eng. Des. Sel., 24, 635–648 (2011). doi: 10.1093/protein/gzr025
  19. Talley K., Kundrotas P., and Alexov E. Modeling salt dependence of protein-protein association: Linear vs non-linear Poisson-Boltzmann equation. Commun. Comput. Phys. 3, 1071–1086 (2008).
  20. Zhang Z., Witham S., and Alexov E. On the role of electrostatics in protein-protein interactions. Phys. Biol., 8 (3), 035001 (2011). doi: 10.1088/1478-3975/8/3/035001

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies