Structural and functional assessment of the condition of wound bed using microwave dielectrometry and laser doppler flowmetry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The aim of the work was to develop and test a combined method for assessing the structural and functional features of the burn wound and periwound area with the use of microwave dielectrometry and Dopplerometry. The study was performed on twenty Wistar rats, thermal injuries from contact were created on each rat, and ten healthy animals. The assessment of the wound condition was performed 24 and 72 hours after burn injury. The study of the dielectric properties of tissues was carried out using a hardware and software complex for near-field resonant microwave sensing. From the results of our studies, it can be concluded that in the early post-injury period (within the first days), a sharp coordinated decrease in the intensity of microcirculation and dielectric permittivity is observed in the wound tissues, gradually and partially restored by the end of the third day after burning. The increased microcirculatory blood flow to the periwound area, leading to an increase in the degree of tissue hydration was observed, and as a consequence, the values of these two indices became higher. In addition, it has been shown that during thermal trauma, a regulatory imbalance of factors providing capillary blood flow around a burn wound area and surrounding tissues is formed, which is compensatory in nature and, in the absence of adequate correction, contributes to the inhibition of regeneration processes. Thus, the combination of the methods used in this study may potentially provide more specific information for a description of the structural and functional features of the analyzed tissue and their dynamics. This is clearly shown by the example of an experimental burn wound.

Sobre autores

A. Martusevich

Privolzhskiy Research Medical University, Ministry of Health of the Russian Federation;Nizhny Novgorod State Agrotechnological University

Email: cryst-mart@yandex.ru
Nizhny Novgorod, Russia

A. Surovegina

Privolzhskiy Research Medical University, Ministry of Health of the Russian Federation;Nizhny Novgorod State Agrotechnological University

Nizhny Novgorod, Russia

V. Nazarov

Privolzhskiy Research Medical University, Ministry of Health of the Russian Federation

Nizhny Novgorod, Russia

A. Fedotova

Privolzhskiy Research Medical University, Ministry of Health of the Russian Federation

Nizhny Novgorod, Russia

Bibliografia

  1. С. А. Паршикова и В. В. Паршиков, Соврем. проблемы науки и образования, № 2, 64 (2012).
  2. F. C. Kao, H. H. Ho, P. Y. Chiu, et al., Sci. Technol. Adv. Mater., 23 (1), 1 (2022).
  3. M. Shafiq, Y. Chen, R. Hashim, et al., Front. Bioeng. Biotechnol., 9, 821288 (2021).
  4. H.N. Wilkinson, M.J. Hardman. Open Biol. 10 (9), 200223 (2020).
  5. Г. М. Кавалерский, А. Д. Ченский, А. В. Уездовский и др., Анналы хирургии, № 6, 37 (2012).
  6. М. Б. Петрова, Е. М. Мохов, А. Н. Сергеев и Е. В. Серов, Соврем. проблемы науки и образования, № 6 (2015).
  7. С. Я. Ивануса, Б. В. Рисман и Г. Г. Иванов. Вестн. росс. воен.-мед. академии, 2, 190 (2016).
  8. Е. Б. Богомолова, А. К. Мартусевич, И. А. Клеменова и др., Медицина, 5 (3), 58 (2017).
  9. А. К. Мартусевич, Д. В. Янин, Е. Б. Богомолова и др., Биомед. радиоэлектроника, 12, 3 (2017).
  10. S. Li, A. H. Mohamedi, J. Senkowsky, et al., Adv. Wound Care (New Rochelle), 9 (5), 245 (2020). 1087
  11. С. Н. Колесов и М. Г. Воловик. Оптич. журн., 86 (6), 59 (2013).
  12. И. В. Турчин. Усп. физич. наук, 186 (5), 550 (2016).
  13. A. K. Martusevich, S. Yu. Krasnova, A. G. Galka, et al., Biophysics, 64 (4), 610 (2019).
  14. J. Liu, L. Xu, D. Hu, et al., Zhonghua Shao Shang Za Zhi, 30 (2), 175 (2014).
  15. A. G. Galka, A. K. Martusevich, D. V. Yanin, and A. V. Kostrov, J.Commun. Technol. Electronics, 65 (9), 1038 (2020).
  16. А. К. Мартусевич, А. А. Епишкина, Е. С. Голыгина и др., Соврем. технологии в медицине, 12 (5), 57 (2020).
  17. A. V. Kostrov, A. I. Smirnov, D. V. Yanin, et al., Bull.Rus. Acad. Sci.: Physics, 69 (12), 1911 (2005).
  18. Д. В. Янин, А. Г. Галка, А. И. Смирнов и др., Журн. радиоэлектроники, № 1, 20 (2015).
  19. Д. В. Янин, А. Г. Галка, А. И. Смирнов идр., Усп. прикл. физики, 6 (2), 555 (2014).
  20. Y. Hayashi, N. Miura, N. Shinyashiki, and S. Yagihara, Phys. Med. Biol., 50 (4), 599 (2005).
  21. A. N. Reznik and N. V. Yurasova, Tech. Phys., 49 (4), 485 (2004).
  22. А. И. Крупаткин и В. В. Сидоров, Лазерная допплеровская флоуметрия микроциркуляции крови (Медицина, М., 2005).
  23. A. A. Kouadio, F. Jordana, N. J. Koffi, et al., Arch. Oral Biol., 86, 58 (2018).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies