Modeling the critical fliker fusion frequency in the human visual system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temporal resolving power of the visual system is essential for the perception of the objective world. The lowest sampling rate of a sequence of images at which perception becomes fused is called the critical flicker fusion frequency. The variety of experimental data on critical frequency thresholds can be explained from a point of view of a model of the contrast sensitivity of the visual system that based on the tremor modulation signal. The model describes the dependence of critical frequency on stimulus brightness, adaptation brightness, duration, and the angular size of the stimulus. This model demonstrates that for bright stimuli with short duration and a large angular size, critical frequency values lie in the range up to 1000 Hz; the frame rate of 300-500 Hz should be considered optimal for the visual system; for small-sized angular stimuli, the critical frequency lies in the low-frequency region. Differences in the rate of flicker fusion can be explained by temporal sensitivity of magno- and parvocellular neurons.

Sobre autores

S. Lyapunov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: dc.cetsil@gmail.com
Moscow, Russia

I. Shoshina

Institute for Cognitive Research, Saint Petersburg State University

Email: shoshinaii@mail.ru
St. Petersburg, Russia

I. Lyapunov

Prokhorov General Physics Institute, Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. К. А. Пупков и Н. Д. Егупов, Математические модели, динамические характеристики и анализ систем автоматического управления (Изд-во МГТУ им. Н.Э. Баумана, М., 2004).
  2. R. S. Brenton, H. S. Thompson, and C. Maxner, In New Methods of Sensory Visual Testing (Springer, NY, 1989), pp 29-52.
  3. A. C. Brown, J. L. Peters, C. Parsons, et al., Front. Hum. Neurosci., 14, 49 (2020).
  4. J. I. Thompson, C. E. Peck, G. Karvelas, et al., Neuropsychologia, 69, 148 (2015).
  5. Y. Chen, D. Norton, and C. Stromeyer, Schizophrenia Res., 156 (2-3), 190 (2014).
  6. B. D. Parsons, S. Gandhi, E. L. Aurbach, et al., Neuropsychologia, 51 (2), 372 (2013).
  7. С. В. Кравков, Глаз и его работа (Изд-во АН СССР, М., 1950).
  8. K. R. Boff and J. E. Lincoln, Engineering Data Compendium: Human Perception and Performance (Wright-Patterson AFB, OH: USAF Harry G. Armstrong Aerospace Medical Research Laboratory, 1988).
  9. R. Kuller and T. Laike, Ergonomics, 41 (4), 433 (2010).
  10. O. de Bruijn and R. Spence, In Proc.Int. Conf. on Advanced Visual Interfaces AVI-2000 (2000), p. 189.
  11. J. Davis, Y.-H. Hsieh, and H.-C. Lee, Sci. Rep., 5 (2015).
  12. J. Melzer and C. Spitzer, Digital avionics handbook, 22, 3 (2017).
  13. А. Л. Ярбус, Роль движений глаз в процессе зрения (Наука, М., 1965).
  14. S. I._Lyapunov, J. Optic. Technol., 81 (6), 349 (2014).
  15. S. I. Lyapunov, J. Optic. Technol., 84 (9), 613 (2017a).
  16. S. I. Lyapunov, J. Optic. Technol., 84 (1), 16 (2017b).
  17. S. I. Lyapunov, J. Optic. Technol., 85 (2), 100 (2018).
  18. В. А. Ильянок и В. Г. Самсонова, Светотехника, 5 (1963).
  19. C. Herrmann, Exp. Brain Res., 137, 346 (2001).
  20. L. G. Ungerleider and M. Mishkin, In Analysis of visual behavior (MIT Press., Cambridge, 1982).
  21. V. H. Perry, R. Oehler, and A. Cowey, Neuroscience, 12, 1101 (1984).
  22. A. M. Derrington and P. Lennie, J. Physiol., 357, 219 (1984).
  23. W. H. Merigan, L. M. Katz, and J. H. Maunsell, J. Neurosci., 11, (4), 994 (1991).
  24. W. H. Merigan and J. H. R. Maunsell, Ann. Rev. Neurosci., 16, 369 (1993).
  25. L. J. Croner and E. Kaplan, Vision Res., 35, 7 (1995).
  26. E. H. F.de Haan, S. R. Jackson, and T. Schenk, Cortex. 98, 1 (2018).
  27. E. Freud, M. Behrmann, and J. C. Snow, Open Mind: Discoveries in Cognitive Science, 4, 40 (2020).
  28. J. J. Nassi and E. M. Callaway, Nat. Rev. Neurosci., 10 (5), 360 (2009).
  29. M. Edwards, S. C. Goodhew, and D. R. Badcock, Psych. Bull. Rev., 28, 1029 (2021).
  30. D. H. de Lange, JOSA, 44, 380 (1954).
  31. P. H. Schiller, N. K. Logothetis, and E. R. Charles, Neuropsychologia, 29, 433 (1991).
  32. A. Klistorner, D. P. Crewther, and S. G. Crewther, Vision Res., 37, 2161 (1997).
  33. E. Kaplan and R. M. Shapley, Proc. Natl. Acad. Sci. USA, 83, 2755 (1986).
  34. A. Brown, M. Corner, D. P. Crewther, and S. G. Crewther, Front. Hum. Neurosci., 12, 176 (2018).
  35. J. I. R. Thompson, C. E. Peck, G. Karvelas, et al., Neuropsychologia, 69, 148 (2015).
  36. A. Abiyev, F. D. Yakaryilmaz, and Z. A. Ozturk, Dementia & Neuropsychologia, 16 (1), 89 (2022).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies