Effect of taxifolin, a conjugate of taxifolin with glyoxylic acid, and naringenin on the functional activity of neutrophils

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The aim of the present work was to study the effects of taxifolin, a conjugate of taxifolin with glyoxylic acid, and naringenin on phagocytosis of latex beads by neutrophils and adhesive properties of these cells. It was shown that taxifolin had no effect on the phagocytic activity and adhesive properties of neutrophils. A conjugate of taxifolin with glyoxylic acid strongly inhibited the phagocytic activity of neutrophils. At the same time, the conjugate significantly enhanced adhesion of these cells. Naringenin decreased phagocytic activity of neutrophils, though to a lesser extent than the conjugate did. Naringenin also inhibited adhesion of neutrophils. Thus, the data collected during our study indicate that polyphenols may influence the functional activity of neutrophils that can play an important role in the modulation of inflammation, especially when prolonged activation of neutrophils leads to tissue damage.

Sobre autores

V. Shubina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: shubinavictoria@yandex.ru
Pushchino, Moscow Region, Russia

M. Kobyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

Yu. Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

Bibliografia

  1. Н. В. Воробьева, Вестн. Моск. ун-та. Сер. 16. Биология, 75 (4), 210 (2020).
  2. М. А. Челомбитько, Вестн. Моск. ун-та. Сер. 16. Биология, 73 (4), 242 (2018).
  3. М. Laforge, C. Elbim, C. Frbre, et al., Nat. Rev. Immunol. 20 (9), 515 (2020).
  4. A. Herrero-Cervera, O. Soehnlein, E. Kenne, Cell. Mol. Immunol., 19 (2), 177 (2022).
  5. V. Papayannopoulos, Nat. Rev. Immunol., 18 (2), 134 (2018).
  6. D. Ribeiro, M. Freitas, S. M. Tomd, et al., Eur. J. Med. Chem., 67, 280 (2013).
  7. D. Ribeiro, E. Fernandes, and M. Freitas, In Flavonoids as Modulators of Neutrophils' Oxidative Burst: Structure-Activity Relationship. Polyphenols: Mechanisms of Action in Human Health and Disease (Acad. Press, 2018), Chapter 20.
  8. T. Kirchner, E. Hermann, S. Moller, et al., Mediators Inflamm., 2013, 710239 (2013).
  9. M. M. de Souza Andrade, V. N. C. Leal, I. G. Fernandes, et al., Antioxidants (Basel), 11 (9), 1690 (2022).
  10. G. S. Pereira, I. Percebom, S. Mendes, et al., Braz. J. Biol., 84, e252936 (2022).
  11. M. Saffarzadeh, H. A. Cabrera-Fuentes, F. Veit, et al., Discoveries (Craiova), 2 (2), e19 (2014).
  12. M. Monobe, K. Ema, Y. Tokuda, et al., Cytotechnology, 62 (3), 201 (2010).
  13. S. Cui, J. Qian, P. Bo, J. Tradit. Chin. Med., 33 (6), 804 (2013).
  14. G. Berton, S. R. Yan, L. Fumagalli, et al., Int. J. Clin. Lab. Res., 26 (3), 160 (1996).
  15. А.А. Галкин и В.С. Демидова, Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка, 2 (2), 25 (2015).
  16. R. Cannataro, A. Fazio, C. La Torre, et al., Antioxidants (Basel), 10 (2), 328 (2021).
  17. A. R0dtjer, L. Skibsted, and M. L. Andersen. Eur. Food Res. Technol., 223, 663 (2006).
  18. B.F. de Simbn, M. Sanz, E CadaWa, et al., Food Chem., 143, 66 (2014).
  19. J. Cai, H. Wen, H. Zhou, et al., Biomed. Pharmacother., 164, 114990 (2023).
  20. Y. Liu, X. Shi, Y. Tian, et al., Front. Pharmacol., 14, 1173855 (2023).
  21. A. Duda-Madej, J. Stecko, J. Sobieraj, et al., Antibiotics (Basel), 11 (11), 1628 (2022).
  22. D.Yang, R. Zhu, H.-X. Xu, et al., Food Bioscience, 53, 102811 (2023).
  23. M. Chen, H. Zhou, C. Huang, et al., Food Chem., 377, 132008 (2022).
  24. M. Chen, P. Liu, H. Zhou, et al., Front. Nutr., 9, 973048 (2022).
  25. V. S. Shubina and Yu. V. Shatalin, J. Food Sci. Technol., 54 (6), 1467 (2017).
  26. M.T. Quinn and F.R. DeLeo, Neutrophil: Methods and Protocols. Methods in Molecular Biology, 2087 (Springer, 2020).
  27. N. Beloborodova, I. Bairamov, A. Olenin, et al., J. Biomed. Sci., 19 (1), 89 (2012).
  28. A. K. Gupta, S. Giaglis, P. Hasler, et al., PLoS One, 9 (5), e97088 (2014).
  29. S. Yousefi, D. Stojkov, N. Germic, et al., Eur. J. Immunol., 49 (2), 221 (2019).
  30. H. R. Thiam, S. L. Wong, D. D. Wagner, et al., Annu. Rev. Cell. Dev. Biol., 36, 191 (2020).
  31. A. Herrero-Cervera, O. Soehnlein, and E. Kenne, Cell. Mol. Immunol., 19 (2), 177 (2022).
  32. Baiula, R. Greco, L. Ferrazzano, et al., PLoS One, 15 (8), e0237746 (2020).
  33. S. de Oliveira, E. Rosowski, and A. Huttenlocher, Nat. Rev. Immunol., 16 (6), 378 (2016).
  34. V. S. Shubina, V. I. Kozina, and Yu. V. Shatalin, Antioxidants (Basel), 10 (8), 1262 (2021).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies