Effect of taxifolin, a conjugate of taxifolin with glyoxylic acid, and naringenin on the functional activity of neutrophils

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aim of the present work was to study the effects of taxifolin, a conjugate of taxifolin with glyoxylic acid, and naringenin on phagocytosis of latex beads by neutrophils and adhesive properties of these cells. It was shown that taxifolin had no effect on the phagocytic activity and adhesive properties of neutrophils. A conjugate of taxifolin with glyoxylic acid strongly inhibited the phagocytic activity of neutrophils. At the same time, the conjugate significantly enhanced adhesion of these cells. Naringenin decreased phagocytic activity of neutrophils, though to a lesser extent than the conjugate did. Naringenin also inhibited adhesion of neutrophils. Thus, the data collected during our study indicate that polyphenols may influence the functional activity of neutrophils that can play an important role in the modulation of inflammation, especially when prolonged activation of neutrophils leads to tissue damage.

Негізгі сөздер

Авторлар туралы

V. Shubina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: shubinavictoria@yandex.ru
Pushchino, Moscow Region, Russia

M. Kobyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

Yu. Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

Әдебиет тізімі

  1. Н. В. Воробьева, Вестн. Моск. ун-та. Сер. 16. Биология, 75 (4), 210 (2020).
  2. М. А. Челомбитько, Вестн. Моск. ун-та. Сер. 16. Биология, 73 (4), 242 (2018).
  3. М. Laforge, C. Elbim, C. Frbre, et al., Nat. Rev. Immunol. 20 (9), 515 (2020).
  4. A. Herrero-Cervera, O. Soehnlein, E. Kenne, Cell. Mol. Immunol., 19 (2), 177 (2022).
  5. V. Papayannopoulos, Nat. Rev. Immunol., 18 (2), 134 (2018).
  6. D. Ribeiro, M. Freitas, S. M. Tomd, et al., Eur. J. Med. Chem., 67, 280 (2013).
  7. D. Ribeiro, E. Fernandes, and M. Freitas, In Flavonoids as Modulators of Neutrophils' Oxidative Burst: Structure-Activity Relationship. Polyphenols: Mechanisms of Action in Human Health and Disease (Acad. Press, 2018), Chapter 20.
  8. T. Kirchner, E. Hermann, S. Moller, et al., Mediators Inflamm., 2013, 710239 (2013).
  9. M. M. de Souza Andrade, V. N. C. Leal, I. G. Fernandes, et al., Antioxidants (Basel), 11 (9), 1690 (2022).
  10. G. S. Pereira, I. Percebom, S. Mendes, et al., Braz. J. Biol., 84, e252936 (2022).
  11. M. Saffarzadeh, H. A. Cabrera-Fuentes, F. Veit, et al., Discoveries (Craiova), 2 (2), e19 (2014).
  12. M. Monobe, K. Ema, Y. Tokuda, et al., Cytotechnology, 62 (3), 201 (2010).
  13. S. Cui, J. Qian, P. Bo, J. Tradit. Chin. Med., 33 (6), 804 (2013).
  14. G. Berton, S. R. Yan, L. Fumagalli, et al., Int. J. Clin. Lab. Res., 26 (3), 160 (1996).
  15. А.А. Галкин и В.С. Демидова, Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка, 2 (2), 25 (2015).
  16. R. Cannataro, A. Fazio, C. La Torre, et al., Antioxidants (Basel), 10 (2), 328 (2021).
  17. A. R0dtjer, L. Skibsted, and M. L. Andersen. Eur. Food Res. Technol., 223, 663 (2006).
  18. B.F. de Simbn, M. Sanz, E CadaWa, et al., Food Chem., 143, 66 (2014).
  19. J. Cai, H. Wen, H. Zhou, et al., Biomed. Pharmacother., 164, 114990 (2023).
  20. Y. Liu, X. Shi, Y. Tian, et al., Front. Pharmacol., 14, 1173855 (2023).
  21. A. Duda-Madej, J. Stecko, J. Sobieraj, et al., Antibiotics (Basel), 11 (11), 1628 (2022).
  22. D.Yang, R. Zhu, H.-X. Xu, et al., Food Bioscience, 53, 102811 (2023).
  23. M. Chen, H. Zhou, C. Huang, et al., Food Chem., 377, 132008 (2022).
  24. M. Chen, P. Liu, H. Zhou, et al., Front. Nutr., 9, 973048 (2022).
  25. V. S. Shubina and Yu. V. Shatalin, J. Food Sci. Technol., 54 (6), 1467 (2017).
  26. M.T. Quinn and F.R. DeLeo, Neutrophil: Methods and Protocols. Methods in Molecular Biology, 2087 (Springer, 2020).
  27. N. Beloborodova, I. Bairamov, A. Olenin, et al., J. Biomed. Sci., 19 (1), 89 (2012).
  28. A. K. Gupta, S. Giaglis, P. Hasler, et al., PLoS One, 9 (5), e97088 (2014).
  29. S. Yousefi, D. Stojkov, N. Germic, et al., Eur. J. Immunol., 49 (2), 221 (2019).
  30. H. R. Thiam, S. L. Wong, D. D. Wagner, et al., Annu. Rev. Cell. Dev. Biol., 36, 191 (2020).
  31. A. Herrero-Cervera, O. Soehnlein, and E. Kenne, Cell. Mol. Immunol., 19 (2), 177 (2022).
  32. Baiula, R. Greco, L. Ferrazzano, et al., PLoS One, 15 (8), e0237746 (2020).
  33. S. de Oliveira, E. Rosowski, and A. Huttenlocher, Nat. Rev. Immunol., 16 (6), 378 (2016).
  34. V. S. Shubina, V. I. Kozina, and Yu. V. Shatalin, Antioxidants (Basel), 10 (8), 1262 (2021).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>