In silico study of solvation effects in solutions of biomolecules: possibilities of an approach based on the 3d-distribution of solvent atomic density

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Biomolecular solvation plays one of the key roles in nature. The biological activity of molecules and the performance of their target functions depend on the features of this process. However, the study of the biomolecule hydration is a non-trivial task for both experimental methods and computer simulations. The paper demonstrates the possibilities of the non-empirical 3D-SDFT/3D-RISM approach based on the 3D-distribution of the solvent atomic density to study the features of biomolecule hydration using the example of a number of amino acids such as Gly-ZW, L-Ala-ZW, L-Val-ZW, L -Pro-ZW, two model proteins such as BP-TI (bovine pancreatic trypsin inhibitor) and PTP1B (protein tyrosine phosphatase 1B), as well as complexes of the PTP1B protein with inhibitors. The presented results show that the approach allows one to describe in detail and at the same time a holistic description of the hydration shell structure of biomolecules.

Sobre autores

S. Kruchinin

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Ivanovo, Russia

M. Fedotova

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Ivanovo, Russia

E. Kislinskaya

Ivanovo State University

Ivanovo, Russia

G. Chuev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: genchuev@rambler.ru
Pushchino, Moscow Region, Russia

Bibliografia

  1. G. J. Rocklin, D. L. Mobley, K. A. Dill, et al., J. Chem. Phys., 139 (18), 184103 (2013).
  2. J. W. Kaus, L. T. Pierce, R. C. Walker, et al., J. Chem. Theory Comput., 9 (9), 4131 (2013).
  3. P. Mikulskis, S. Genheden, and U. Ryde, J. Chem. Inf. Model., 54 (10), 2794 (2014).
  4. B. Guillot, J. Mol. Liq., 101 (1-3), 219 (2002).
  5. J. F. Ouyang and R. P. Bettens, Chimia (Aarau), 69 (3), 104 (2015).
  6. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem., 91 (24), 6269 (1987).
  7. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys., 79 (2), 926 (1983).
  8. A. V Onufriev and S. Izadi, Wiley Interdisc. Rev.: Comput. Mol. Sci., 8 (2), e1347 (2017).
  9. W. C. Still, A. Tempczyk, R. C. Hawley, et al., J. Am. Chem. Soc., 112 (16), 6127 (1990).
  10. B. N. Dominy and C. L. Brook, J. Phys. Chem B, 103 (18),3765 (1999).
  11. B. Honig and A. Nicholls, Science, 268 (5214), 1144 (1995).
  12. J. Wu, AIChE J., 52 (3), 1169 (2006).
  13. J. Wu and Z. Li, Annu. Rev. Phys. Chem., 58 (1), 85 (2007).
  14. S. Zhao, R. Ramirez, R. Vuilleumier, et al., J. Chem. Phys., 134 (19), 194102 (2011).
  15. L. Blum, J. Chem. Phys., 57, 1862 (1972).
  16. M. Ikeguchi and J. Doi, J. Chem. Phys., 103 (12), 5011 (1995).
  17. R. Ishizuka and N. Yoshida, J. Chem. Phys., 139 (8), 084119 (2013).
  18. D. Chandler and H. C.Andersen, J. Chem. Phys., 57 (5), 1930 (1972).
  19. F. Hirata, P. J. Rossky and B. M. Pettitt, J. Chem. Phys., 78 (6), 4133 (1983).
  20. J. Perkyns and B. M. Pettitt, J. Chem. Phys., 97 (10), 7656 (1992).
  21. D. Chandler, J. D. Mccoy, and S. J. Singer, J. Chem. Phys., 85 (10),5971 (1986).
  22. Y. Liu, J. Fu, and J. Wu, J. Phys. Chem. Lett., 4 (21), 3687 (2013).
  23. Y. Liu, S. Zhao, and J. Wu, J. Chem. Theory Comput., 9 (4), 1896 (2013).
  24. M. Valiev and G. N. Chuev, J. Stat. Mech. Theory Exp., 2018 (9), 093201 (2018).
  25. G. N. Chuev, M. V. Fedotova, and M. Valiev, J. Chem. Phys., 152 (4), 041101 (2020).
  26. Q. H. Du, D. Beglov, and B. Roux, J. Phys. Chem. B, 104 (4) 796 (2000).
  27. A. Kovalenko and F. Hirata, J. Chem. Phys., 110 (20), 10095 (1999).
  28. Y. Liu, S. Zhao, and J. Wu, J. Chem. Theory Comput., 9 (4), 1896 (2013).
  29. T. Imai, A. Kovalenko, and F. Hirata, Chem. Phys. Lett., 395 (1-3), 1 (2004).
  30. N. Yoshida, S. Phongphanphanee, and F. Hirata, J. Phys. Chem. B, 111 (17), 4588 (2007).
  31. J. S. Perkyns, G. C. Lynch, J. J. Howard, et al., J. Chem. Phys. 132 (6), 064106 (2010).
  32. D.J. Sindhikara and F. Hirata, J. Phys. Chem. B, 117 (22), 6718 (2013).
  33. S. Gusarov, B. S. Pujari, and A. Kovalenko, J.Comput. Chem., 33 (17), 1478 (2012).
  34. M. V Fedotova and S. E. Kruchinin, Biophys. Chem., 190-191, 25 (2014).
  35. O. A. Dmitrieva and M. V Fedotova, New J. Chem., 39 (11),8594 (2015).
  36. A. Eiberweiser, A. Nazet, M. V Fedotova, et al., J. Phys. Chem. B, 119 (49), 15203 (2015).
  37. M. V. Fedotova and O.A. Dmitrieva, Amino Acids, 48 (7), 1685 (2016).
  38. O. A. Dmitrieva, M. V Fedotova, and R. Buchner, Phys. Chem. Chem. Phys., 19 (31), 20474 (2017).
  39. M. V. Fedotova, S. E. Kruchinin, and G. N. Chuev, New J. Chem., 41 (3), 1219 (2017).
  40. M. V Fedotova and S. E. Kruchinin, J. Mol. Liq., 244, 489 (2017).
  41. S. Gussregen, H. Matter, G. Hessler, et al., J. Chem. Inf. Model., 57 (7), 1652 (2017).
  42. N.Yoshida, J. Chem. Inf. Model., 57 (11), 2646 (2017).
  43. M. V Fedotova, J. Mol. Liq., 292, 111339 (2019).
  44. M. V Fedotova, S. E. Kruchinin, and G. N. Chuev, J. Mol. Liq., 304, 112757 (2020).
  45. S. Friesen, M. V Fedotova, S. E. Kruchinin, et al., Phys Chem Chem Phys 23 (2), 1590 (2021).
  46. M. Sugita, I. Onishi, M. Irisa, et al., Molecules, 26 (2), 271 (2021).
  47. D. Roy and A. Kovalenko, Int. J. Mol. Sci., 22 (10), 5061 (2021).
  48. N. Kumawat, A. Tucs, S. Bera, et al., Molecules, 27 (3), 799 (2022).
  49. S. E. Kruchinin, E. E. Kislinskaya, G. N. Chuev, et al., Int. J. Mol. Sci., 23 (23), 14785 (2022).
  50. S. E. Kruchinin, G. N. Chuev, and M. V Fedotova, J. Mol. Liq., 384, 122281 (2023).
  51. G. N. Chuev, M. V Fedotova, and M. Valiev, J. Stat. Mech., 2021, 033205 (2021).
  52. B. Kezic and A. Perera, J. Chem. Phys., 135 (24), 234104 (2011).
  53. G. N. Chuev, I. Vyalov, and N. Georgi, J.Comput. Chem., 35 (13), 1010 (2014).
  54. A. Kovalenko, In Molecular Theory of Solvation, Ed. By F. Hirata (Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2003), pp.169-275.
  55. A. Kovalenko and F. Hirata, J. Chem. Phys., 112 (23), 10391 (2000).
  56. A. Kovalenko, Pure Appl. Chem., 85 (1), 159 (2013).
  57. M. V. Fedotova and S. E. Kruchinin, J. Mol. Liq., 169, 1 (2012).
  58. M. V. Fedotova and O. A Dmitrieva, Amino acids, 47 (6), 1015 (2015).
  59. A. Wlodawer, J. Walter, R. Huber, et al., J. Mol. Biol., 180 (2), 301 (1984).
  60. B. Kassell and M. Laskowski Sr, Biochem. Biophys. Res.Commun., 20 (4), 463 (1965).
  61. K. D. Berndt, P. Guntert, L. P. Orbons, et al., J. Mol. Biol., 227 (3), 757 (1992).
  62. V. P. Denisov, J. Peters, H. D. Horlein, et al., Biochemistry, 43 (38), 12020 (2004).
  63. G. Otting, K. Wuthrich, J. Am. Chem. Soc., 111 (5), 1871 (1989).
  64. D. S. Cui, J. M. Lipchock, D. Brookner, et al., J. Am. Chem. Soc., 141 (32), 12634 (2019).
  65. L. Tabernero, A. R. Aricescu, E. Y. Jones, et al., FEBS J., 275 (5), 867 (2008).
  66. A. J. Barr, E. Ugochukwu, W. H. Lee, et al., Cell, 136 (2), 352 (2009).
  67. D. Barford, A. J. Flint, and N. K. Tonks, Science, 263 (5152), 1397 (1994).
  68. Z.-K. Wan, J. Lee, W. Xu, et al., Bioorg. Med. Chem. Lett., 16 (18), 4941 (2006).
  69. D. P. Wilson, Z.-K. Wan, W.-X. Xu, et al., J. Med. Chem., 50 (19), 4681 (2007).
  70. J. L. Thomaston, N. F. Polizzi, A. Konstantinidi, et al., J. Am. Chem. Soc., 140 (45), 15219 (2018).
  71. B. Z. Zsido and C. Heicnyi, Curr. Opin. Struct. Biol., 67, 1 (2021).
  72. D. A. Giambasu, D. M. Case, and G. M. York, J. Am. Chem. Soc., 141 (6), 2435 (2019).
  73. A. K. Pedersen, G. H. Peters, K. B. Moller, et al., Acta Crystallogr. D - Biol. Crystallogr., 60 (Pt 9), 1527 (2004).
  74. A. Ozcan, E. O. Olmez, and B. Alakent, Prot. Struct. Funct. Bioinf., 81 (5), 788 (2013).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies