Experimental and theoretical determination of the speed of sound in lung parenchyma of rabbits

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The purpose of the study was to develop an experimental-theoretical method for determining the speed of sound in the lung parenchyma. The method is based on the measurement of the characteristics of the impedance of the Helmholtz resonator, that contains lungs under study. The input impedance of the Helmholtz resonator corresponds to the parallel connection of the lung impedance and a resonator. The modified two-microphone method is used to measure the resonant frequency and input impedance response of the product of the resonator chamber volume (lungs). The experimental system consisted of a loud speaker, a wave guide, two microphones for the measurement, and the end empedance node in the form of a connecting tube extended to the inside of the Helmholtz resonator with specified geometric characteristics. When the lungs are added to the Helmholtz resonator, the frequency increases, but not linearly with the decrease in their volume, indicating that the speed of sound is abnormal low in the lung parenchyma. The difference between the calculated and measured resonant frequencies is used to determine the speed of sound in the lung parenchyma. The measurements were carried out on air and collapsed lungs of 8 apparently healthy rabbits. Two variants of sound transmission in the lung parenchyma, corresponding to isothermal and adiabatic processes, are considered. The results of measurement and calculation demonstrate that the speed of sound in the lung parenchyma of an apparently healthy rabbit is 21-22 m/s, what is in accord with modern theoretical concepts.

Sobre autores

V. Kezik

State Research Centre of the Russian Federation “Burnasyan Federal Medical Biophysical Center”

Email: vladimirik57@mail.ru
Moscow, Russia

S. Dragan

State Research Centre of the Russian Federation “Burnasyan Federal Medical Biophysical Center”

Moscow, Russia

A. Suleymanov

State Research Centre of the Russian Federation “Burnasyan Federal Medical Biophysical Center”

Moscow, Russia

Bibliografia

  1. E. S. Webster and C. E. Davies, Sensors, 10, 10663 (2010).
  2. С. Н. Ржевкин, Курс лекций по теории звука (Изд-во Московского университета, М., 1960).
  3. И. В. Лебедева и С. П. Драган, Измерительная техника, № 6, 52 (1988).
  4. С. П. Драган, В. И. Кезик и А. В. Богомолов, Изв. РАН. Сер. биол., № 2, 181 (2022).
  5. D. A. Rice, J. Appl. Physiol., 54 (1), 304 (1983).
  6. D. A. Rice, in ILSA Proc. (Lexington, 1986), p. 13.
  7. В. А. Ивашин, В. И. Кезик и В. П. Соловьев, Саратовский науч.-мед. журн., 13 (4), 907 (2017).
  8. Человек. Медико-биологические данные (Медицина, М., 1977).
  9. А. И. Дьяченко и А. Н. Михайловская, Труды ИОФАН, 68, 136 (2012).
  10. В. В. Замащиков и Н. А. Какуткина, Акустич. журн., 37 (3), 484 (1991).
  11. Б. Е. Гельфанд, А. В. Губанов и Е. Н. Тимофеев, Физика горения и взрыва, № 4, 129 (1981).
  12. J. Pierre, R.-M. Guillermic, F. Elias, et al., Eur. Phys. J., 36, 113 (2013).
  13. A. B. Wood, A Textbook of sound (London, 1946).
  14. J. Pierre, C. Gaulon, C. Derec, et al., Investigating the origin of acoustic attenuation in liquid foams, HAL Id: hal-0153666 (2017).
  15. А. В. Богомолов и С. П. Драган, Докл. РАН, 464 (5), 623 (2015).
  16. А. В. Богомолов, С. П. Драган и Г. Г. Ерофеев, Докл. РАН, 487 (1), 97 (2019).
  17. С. П. Драган, А. В. Богомолов и В. И. Кезик, Рос. журн. биомеханики, 24 (2), 187 (2020).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies