Study of the influence of pH on the conformation of a modified aptamer to nucleolin protein

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The search for agents for targeted delivery of anticancer drugs remains a crucial challenge for medicine. For this reason, DNA aptamers targeting cancer cell-specific proteins have medical use. At the same time, the additional fine-tuning of aptamer properties to lower affinity of aptamers for target cells that are not surrounding cancerous tissues makes the aptamers promising tools in clinical applications due to reduced immunogenicity and fewer side effects. One of the approaches is to use acidity disruption in cancer cells and tissues. In this work, aptamer AS1411 was modified to increase affinity for nucleolin by attaching a nucleotide sequence to its binding site to create a pH-sensitive linker. UV melting and fluorescence methods were employed to demonstrate that the conformation of the new aptamer depends on pH of the medium.

Palavras-chave

Sobre autores

P. Gabrusenok

Saint-Petersburg State University

Petersburg, Russia

R. Ramasanoff

Sevastopol State University

Sevastopol, Russia

A. Buchelnikov

Sevastopol State University

Sevastopol, Russia

P. Sokolov

Saint-Petersburg State University;Sevastopol State University

Email: p.a.sokolov@spbu.ru
Petersburg, Russia;Sevastopol, Russia

Bibliografia

  1. F. Mongelard and P. Bouvet, Trends Cell Biol., 17 (2), 80 (2007).
  2. S. Christian, J. Pilch, M. E. Akerman, et al., J. Cell Biol., 163 (4), 871 (2003).
  3. J. Mosafer and A. Mokhtarzadeh, Curr. Drug Delivery, 15 (9), 1323 (2018).
  4. C. Brignole, V. Bensa, N. A. Fonseca, et al., J. Exp. Clin. Cancer Res., 40 (1), 180 (2021).
  5. J. BalQa-Silva, A. do Carmo, H. Tao, et al., Exp. Cell Res., 370 (1), 68 (2018).
  6. V. Moura, M. Lacerda, P. Figueiredo, et al., Breast Cancer Res. Treat., 133 (1), 61 (2012).
  7. J. Carvalho, A. Paiva, M. P. Cabral Campello, et al., Sci. Rep., 9 (1), 7945 (2019).
  8. N. F. Hosseini, R. Amini, M. Ramezani, et al., Biomed. Pharmacother., 155, 113690 (2022).
  9. С. П. Радько, С. Ю. Рахметова, Н. В. Бодоев и др., Биомед. химия, 53 (1), 5 (2007).
  10. С. А. Лапа, В. Е. Шершов, Г. С. Краснов и др., Биоорг. химия, 46 (4), 411 (2020).
  11. Z. Fu and J. Xiang, Int. J. Mol. Sci., 21 (8), 2793 (2020).
  12. R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
  13. B. A. Webb, M. Chimenti, M. P. Jacobson, et al., Nat. Rev. Cancer, 11 (9), 671 (2011).
  14. M. Damaghi, J. W. Wojtkowiak, and R. J. Gillies, Front. Physiol. 4, 370 (2013).
  15. I. A. P. Thompson, L. Zheng, M. Eisenstein, et al., Nat.Commun., 11 (1), 2946 (2020).
  16. M. Debiais, A. Lelievre, M. Smietana, et al., Nucl. Acids Res., 48 (7), 3400 (2020).
  17. https://eu.idtdna.com/calc/analyzer.
  18. P. A. Rachwal and K. R. Fox, Methods, 43 (4), 291 (2007).
  19. J. A. Lee and M. C. DeRosa, Chem.Commun., 46 (3), 418 (2010).
  20. L. Bie, Y. Wang, F. Jiang, et al., Front. Mol. Biosci., 9, 1025313 (2022).
  21. F. C. Simmel, B. Yurke, and H. R. Singh, Chem. Rev., 119 (10), 6326 (2019).
  22. S. E. Morse and D. E. Draper, Nucl. Acids Res., 23 (2), 302 (1995).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies