Alteration of enzyme-substrate interactions by ultra-high dilutions of the substrate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effects of different ultra-high dilutions of luciferin ranged from 1010 to 10102 on luciferin-luciferase reaction of fireflies were investigated. Luciferin substrate concentration varied from 0.0025 nM to 2.5 nM and ATP concentration remained unchanged. This study evaluated the bioluminescence intensity after addition of ultra-high dilutions of luciferin or ultra-high dilutions of water to the bioluminescent system and some multidirectional and significant differences were found. The number of ultra-high dilutions from studied starting materials, for which significant differences were found, increased sharply with decreasing substrate concentration to 0.0025 nM. No differences were found when the effects of ultra-high dilutions of a non-specific control imidazole and ultra-high dilutions of water on the signal intensity were compared. Our results suggest that ultra-high dilutions of luciferin can specifically inhibit the luciferin-luciferase reaction.

Sobre autores

G. Lomakina

Lomonosov Moscow State University

Moscow, Russia

N. Ugarova

Lomonosov Moscow State University

Email: nugarova@gmail.com
Moscow, Russia

Bibliografia

  1. A. Ouertani, M. Neifar, R. Ouertani, et al., Adv. Tissue Eng. Regen Med. Open Access, 5, 85 (2019).
  2. Z. M. Kaskova, A. S. Tsarkova, and I. V. Yampolsky, Chem. Soc. Rev., 45 (21), 6048 (2016).
  3. L. J. Kricka, Anal. Biochem., 175 (1), 14 (1988).
  4. A. Pandey, P. Nigam, C. R. Soccol, et al., Biotechnol. Appl. Biochem., 31 (2), 135 (2000).
  5. N. N. Ugarova and G. Y. Lomakina, Moscow University Chem. Bull., 75, 15 (2020).
  6. D. V. Smirnova and N. N. Ugarova, Comb. Chem. High Throughput Screen., 18 (10), 946 (2015).
  7. P. M. de Souza and P. de Oliveira Magalhaes, Brazil. J. Microbiol., 41, 850 (2010).
  8. S. Raveendran, B. Parameswaran, S. B. Ummalyma, et al., Food Technol. Biotechnol., 56 (1), 16 (2018).
  9. V. I. Bruskov, A. V. Chernikov, et al., Phys. Wave Phen., 28 (2), 103 (2020).
  10. I. A. Scherbakov, I. V. Baimler, S. V. Gudkov, et al., Dokl. Physics, 65 (8), 9 (2020).
  11. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, et al., Phys. Wave Phen., 27 (2), 141 (2019).
  12. S. V. Gudkov, N. V. Penkov, I. V. Baimler, et al., Int. J. Mol. Sci., 21, 8033 (2020).
  13. I. V. Baymler, S. V. Gudkov, R. M. Sarimov, et al., Dokl. Physics, 65 (1), 5 (2020).
  14. W. Lauterborn, Appl. Phys. Lett., 21 (1), 27 (1972).
  15. N. F. Bunkin and F. V. Bunkin, Laser Physics, 3 (1), 63 (1993).
  16. A. Mai-Prochnow, R. Zhou, T. Zhang, et al., NPJ Biofilms and Microbiomes, 7, 11 (2021).
  17. Y. M. Zhao, A. Patange, D. W. Sun, et al., Comprehensive Reviews in Food Science and Food Safety, 19 (6), 3951 (2020).
  18. A. Scherbakov, Phys.Wave Phen., 29 (2), 89 (2021).
  19. I. S. Ryzhkina, L. I. Murtazina, Y. V. Kiseleva, et al., Dokl. Phys. Chem., 462 (1), 110 (2015).
  20. S.V. Gudkov, I.V. Baimler, O.V. Uvarov, et al., Front. Physics, 8, 622551 (2020).
  21. E. Don, O. Farafonova, S. Pokhil, et al., Sensors, 16, 10 (2016).
  22. E. S. Don, S. A. Bobrovnik, G. Sherriff, et al., J. Immunoassay Immunochem., 40 (3), 250 (2019).
  23. O. Epstein, Symmetry, 10 (4), 14 (2018).
  24. P. Bellavite, M. Marzotto, D. Olioso, et al., Homeopathy, 103 (1), 22 (2014).
  25. P. Muller, E. Ignatz, S. Kiontke, et al., Chem. Sci., 9 (5), 1200 (2017).
  26. S. A. Tarasov, E. A. Gorbunov, E. S. Don, et al., J. Immunol., 205 (5), 1345 (2020).
  27. P. S. Chikramane, D. Kalita, A. K. Suresh, et al., Langmuir, 28 (45), 15864 (2012).
  28. N. F. Bunkin, A. V. Shkirin, S. N. Chirikov, et al., ACS Omega, 5 (24), 14689 (2020).
  29. N. F. Bunkin, A. V. Shkirin, N. V. Penkov, et al., Phys. Wave Phen., 27 (2), 102 (2019).
  30. R. Bell, and G. E. Schwartz, Front.Biosci. (Schol Ed.), 5 (2), 685 (2013).
  31. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, et al., Phys. Wave Phen., 29 (2), 108 (2021).
  32. G. A. Lyakhov, and I. A. Scherbakov, Phys. Wave Phen., 27 (2), 79 (2019).
  33. V. Elia, G. Ausanio, F. Gentile, et al., Homeopathy, 103 (1), 44 (2014).
  34. E. Freier, S. Wolf, and K. Gerwert, Proc. Natl. Acad. Sci. USA, 108 (28), 11435 (2011).
  35. K. Haider, L. Wickstrom, S. Ramsey, et al., J. Phys. Chem. B, 120 (34), 8743 (2016).
  36. T. H. Plumridge and R. D. Waigh, J. Pharm. Rharmacol., 54 (9), 1155 (2002).
  37. T. M. Raschke, Curr. Opin. Struct. Biol., 16 (2), 152 (2006).
  38. R. A. Morton, T. A. Hopkins, and H. H. Seliger, Biochemistry, 8 (4), 1598 (1969).
  39. M. I. Koksharov and N. N. Ugarova, Photochem. Photobiol. Sci., 10 (6), 931 (2011).
  40. К. А. Сарбашев и Е. О. Химич, Свидетельство №2022665255. TenzometryUnit (программа для ЭВМ), 03.08.2022.
  41. V. V. Novikov and E. V. Yablokova, Field. Appl. Sci., 12, 5185 (2022).
  42. K. V. Wood, Available online: https://world-wide.promega.com/resources/pubhub/enotes/the-bioluminescence-advantage/(accessed on 23.12.2020).
  43. Food and Drug Administration, ORA Laboratory Manual Volume II. 2020, ORA-LAB.5.4.5.
  44. US Department of Health and Human Services, C.o.V.M. Food and Drug Administration. 2015, VICH GL49(R).
  45. M. Pschenitza, E. S. Gavrilova, C. Tarasov, et al., Int. Immunopharmacol., 21 (1), 225 (2014).
  46. N. N. Ugarova, J. Biolumin. Chemilumin., 4 (1), 406 (1989).
  47. W. D. McElroy, H. H. Seliger, and E. H. White, Photochem. Photobiol., 10 (3), 153 (1669).
  48. J. C. Cazin, M. Cazin, J. L. Gaborit, et al., Hum. Toxicol., 6 (4), 315 (1987).
  49. E. B. Burlakova, A. A. Konradova, and E. L. Maltseva, Chem. Physics, 22, 106 (2003).
  50. J. M. Saa and A. Frontera, ChemPhysChem., 21 (4), 313 (2020).
  51. I. V. Berezin, L. Y. Brovko, and N. N. Ugarova, Rus. J. Bioorg. Chem., 3 (12), 1589 (1977).
  52. S. D. Banik, M. Nordblad, J. M. Woodley, et al., Catalysts, 7 (8), 18 (2017).
  53. RCSB PDB, Available online: https://www.rcsb.org/structure/2D1R (accessed on 19.05.2020).
  54. V. V. Goncharuk, T. V. Pletneva, E. V. Uspenskaya, et al., J. Water Chem. Technol., 39 (6), 325 (2017).
  55. K. Johnson, arXiv: Atomic and Molecular Clusters (2009).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies