Therapeutic effects of high-dose inhaled nitric oxide gas against post-covid syndrome, diabetes or AIDS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A therapeutic effect of high-dose nitric oxide gas inhalation (more than 1000 ppm) on patients with post-COVID syndrome, diabetes or AIDS is shown. It has been proposed that nitrosonium cations (NO+), derivatives of nitric oxide gas, the emergence of which in the blood or organ tissues of patients is related to disproportion reaction of NO molecules, forming a co-ordinate bond with the Fe2+ion, carried by transferrin or entered into the labile (free) iron pool may act as a therapeutic agent. It is quite probable that treatment of HIV infection (as well as the earlier revealed effect of NO gas on the patients with COVID-19) could be provided by the effects of S-nitrosylation of NO+ cations on thiol groups of viral proteases and host proteins. A beneficial effect of NO+ cations which emerged in the reaction of NO gas molecules in patients with post-COVID syndrome or diabetes can be also associated with an inhibitory effect of these cations on the thiol-containig proteins that are involved in apoptosis.

Sobre autores

A. Vanin

N.N. Semenov Federal Research Center for Chemical Physics

Email: vanin.dnic@gmail.com
Moscow, Russia

A. Pekshev

N.E. Bauman Moscow State Technical University

Moscow, Russia

E. Pechyonkin

Stavropol State Medical University

Stavropol, Russia

A. Vagapov

N.E. Bauman Moscow State Technical University

Moscow, Russia

N. Sharapov

N.E. Bauman Moscow State Technical University

Moscow, Russia

Bibliografia

  1. А. В. Шиповалов, А. Ф. Ванин, О. В. Пьянков и др., Биофизика, 67 (5), 969 (2022).
  2. A. F. Vanin, V. A. Tronov, and R. R. Borodulin, Cell Biochem. Biophys., 79, 93 (2021).
  3. А. Ф. Ванин, Д. И. Телегина, В. Д. Микоян и др., Биофизика, 67 (5), 938 (2022).
  4. Е. В. Печёнкин, А. В. Коврижкин, А. В. Пекшев и др., Биофизика, 67 (6), 1251 (2022).
  5. А. Ф. Ванин, А. В. Пекшев, А. Б. Вагапов и др., Биофизика, 66 (1), 183 (2021).
  6. L. J. Ignarro, Pharmacol. Toxicol., 67, 1 (1990).
  7. P. C. Ford, Inorg. Chem., 49, 6226 (2010).
  8. A. A. Timoshin, V. L. Lakomkin, A. A. Abramov, et al., Eur. J. Pharmacol., 765, 525 (2015).
  9. A. F. Vanin, Cell Biochem. Biophys., 77, 279 (2019).
  10. А. Ф. Ванин, Биофизика, 65, 4, 421 (2020).
  11. A. F. Vanin, Appl. Magn. Reson., 51, 851 (2020).
  12. V. Yu. Titov and A. N. Osipov, Redox Rep., 22, 2 (2017).
  13. T. H. Han, J. M. Fucuto, and J. C. Liao, Nitric Oxide Biol. Chem., 10, 74 (2004).
  14. Q. Li, C. Li, H. K. Mahtani, et al., J. Biol. Chem., 289, 19917 (2014).
  15. A. S. Hurtsen, I. Z. Nilsson, E. M. Dogan, et al., Drug Design, Development &Therapy, 14, 635 (2020).
  16. F. Blasina, L. Vaamonde, F. Silvera, et al., Pulmonary Pharmacol. Ther., 54, 68 (2019).
  17. Yu. P. Vedernikov, P. I. Mordvintcev, I. V. Malenkova, et al., Eur. J. Pharmacol., 211, 313 (1992).
  18. А. Ф. Ванин, Биофизика, 65, 818 (2020).
  19. S. Castro-Gonzalez, M. Colomer-Lluch, and R. Serra-Moreno, AIDS Research and Human Retroviruses, 34, 9, 739 (2018).
  20. Н. Н. Петрищев, О. В. Халепо, Ю. А. Вавиленкова и др., Региональное кровообращение и микроциркуляция, 19, 3 (2020).
  21. М. Ю. Мартынов, А. И. Боголепов и А. Н. Ясманова, Журн. неврологии и психиатрии им. С.С. Корсакова, 121, 93 (2021).
  22. L. Perico, A. Benigni, F. Casivaghi, et al., Nat. Rev. Nephrol., 17, 46 (2021).
  23. A. K. V. Iyer, Y. Rojansakul, and N. Azad, Nitric Oxide Biol. Chem., 42, 9 (2014).
  24. Y. M. Kim, H. T. Chung, R. L. Symmons, et al., J. Biol. Chem., 275, 10954 (2000).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies