Local optical tomography of a nerve cell

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The presented modification of the method of local optical tomography makes it possible to study the dynamic processes of subcellular structures of native nerve cells. The advantage of this approach is that it is possible to analyze the dynamics of the distribution of neuron structures at a point or area of interest inside the cell without performing a complete reconstruction of the cell image. It has been proved that it becomes possible to determine the dimensions, the cell area of interest, and the coordinates of subcellular structures for further study of their dynamics. In this modification, the method of local tomography could be used to study both cells and cellular structures, because it is not necessary to probe a full field of view. Local probing of the region of interest during the functioning of the nerve cell will, firstly, reduce the time of data recording for obtaining local tomograms, and, secondly, provide the opportunity to explore the dynamics of several regions inside the cell at the same time.

Sobre autores

G. Levin

All-Russian Research Institute of Optical and Physical Measurements

Moscow, Russia

A. Samoilenko

All-Russian Research Institute of Optical and Physical Measurements

Moscow, Russia

T. Kazakova

Lomonosov Moscow State University

Moscow, Russia

T. Marakutsa

National Research Technological University “MISiS”

Moscow, Russia

G. Maksimov

Lomonosov Moscow State University;National Research Technological University “MISiS”

Email: gmaksimov@mail.ru
Moscow, Russia;Moscow, Russia

Bibliografia

  1. A. I. Yusipovich, E. Yu. Parshina, A. A. Baizhumanov, et al., Instruments and Experimental Techniques, 64 (6), 877 (2021).
  2. А. И. Юсипович, С. М. Новиков, Т. А. Казакова и др., Квантовая электроника, 36 (9), 874 (2006).
  3. http://www.tomocube.com (дата посещения 01.08.2022).
  4. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, et al., Microscopy and Analysis, 87, 19 (2004).
  5. M. Slaney and A. C. Kak, Proc. SPIE, 413, 2 (1983).
  6. T. A. Kazakova, O. N. Suchalko, A. D. Ivanov, et al., bioRxiv (The preprint server for biology) (2020).
  7. T. A. Kazakova, A. I. Yusipovich, and G. V. Maksimov, Вестн. МГТУ им. Н.Э. Баумана (Естественные науки), 6 (93), 137 (2020).
  8. G. N. Vishnyakov, G. G. Levin, V.L. Minaev, et.al., Opt. Spectrosc., 125, 1065 (2018).
  9. G. N. Vishnyakov, G. G. Levin, et al., Proc. SPIE, 348, 596 (1982).
  10. Э. И. Вайнберг, И. А. Казак и В. П. Курозаев, ДАН СССР, 257 (1), 89 (1981).
  11. A. Faridani, E. L. Ritman, and K. T. Smith, J. Appl. Math., 52 (2), 459 (1992).
  12. А. Р. Браже, Н. А. Браже, О. В. Сосновцева и др., Компьютерные исследования и моделирование, 1 (1), 77 (2009).
  13. A. A. Platonova, S. V. Koltsova, G. V. Maksimov, et al., Biophysics, 58, 389 (2013).
  14. N. S. Bondarenko, A. I. Yusipovich, S. S. Kovalenko, et al., Biologicheskie Membrany, 30 (3), 199 (2013).
  15. A. I. Yusipovich, Yu. Berestovskaya, V. Shutova, et al., Measurement Techniques, 55 (3), 351 (2012)
  16. A. R. Brazhe, N. A. Brazhe, G. V. Maksimov, et al., J. Biomed. Optics, 13 (3), 034004 (2008).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies