Effect of α1-adrenoreceptors stimulation on electrical activity of rat atria

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of methoxamine, an agonist at α1-adrenergic receptors, on the frequency of spontaneous activity and parameters of the electrical activity of the atrial myocardium was investigated in rats with normal sinus rhythm and in normal rats under continuous electrical pacing. Methoxamine exerted dual effects on the duration of repolarization of working cardiomyocytes. Methoxamine increased the duration of the repolarization phase of the action potential in normal rats under continuous electrical pacing but decreased it in rats with normal sinus rhythm.

Sobre autores

N. Mansour

Kazan Federal University

Email: nourm94@mail.ru
Kazan, Russia

N. Ziyatdinova

Kazan Federal University

Kazan, Russia

A. Gallieva

Kazan Federal University

Kazan, Russia

R. Shakirov

Kazan Federal University

Kazan, Russia

T. Zefirov

Kazan Federal University

Kazan, Russia

Bibliografia

  1. R. M. Graham, Cleve Clin. J. Med., 57 (5), 481(1990).
  2. D. M. Perez, Front. Pharmacol., 29, 11 (2020).
  3. R. P. Ahlquist, Am. J. Physiol., 153 (3), 586 (1948).
  4. A. L. Morrow and I. Creese, Mol. Pharmacol., 29 (4), 321 (1986).
  5. D. M. Perez, M. T. Piascik, and R. M. Graham, Mol. Pharmacol., 40 (6),876 (1991).
  6. J. R. Docherty, Eur. J. Pharmacol., 855, 305 (2019).
  7. A. J. Baker, Pflugers Arch., 466 (6), 1139 (2014).
  8. T. L. Zefirov, et al., Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 160 (4), 613 (2018).
  9. S. Z. Langer, Biochem. Pharmacol., 23 (13),1793 (1974).
  10. K. B. Lai, J. E. Sanderson, and C. M. Yu, Cardiovasc. Drugs Ther., 23 (4), 271 (2009).
  11. T. D. O'Connell, B. C. Jensen, A. J. Baker, and P. C. Simpson, Pharmacol. Rev., 66 (1), 308 (2014).
  12. K. Nishimaru, M. Kobayashi, T. Matsuda, et al., AJP Heart Circ. Physiol., 280 (1), H132 (2001).
  13. M. Stengl, K. Mubagwa, E. Carmeliet, and W. Flameng, Cardiovasc. Res., 38 (3), 703 (1998).
  14. G. Gambassi, H. A. Spurgeon, E. G. Lakatta, et al., Circ. Res., 71(2), 870 (1992).
  15. A. S. Averin, L. A. Andreeva, S. S. Popova, et al., J.Comp. Physiol. B, 191, 927 (2021).
  16. S. H. Woo and C. O. Lee, Pflugers Arch., 437 (3), 335 (1999).
  17. T. L. Zefirov, I. I. Khabibrakhmanov, N. I. Ziyatdinova, and A. L. Zefirov, Bul. Exp. Biol. Med., 162 (1), 4 (2016).
  18. S. Zhang, R. Takahashi, N. Yamashita, et al., Eur. J. Pharmacol., 839, 82 (2018).
  19. J. M. Nerbonne and R. S. Kass, Physiol. Rev., 85 (4), 1205 (2005).
  20. S. A. Kodirov, V. L. Zhuravlev, T. A. Safonova, et al., Rev. Clin. Pharmacol. Drug Therapy, 3 (4), 27 (2004) [in Russian].
  21. L. Virag, N. lost, M. Opincariu, et al., Cardiovasc. Res., 49 (4), 790 (2001).
  22. E. Grandi, M. C. Sanguinetti, D. C. Bartos, et al., J. Physiol., 595 (7), 2209 (2017).
  23. I. I. Khabibrakhmanov, N. I. Ziyatdinova, and T. L. Zefirov, Russ. J. Cardiol., 26 (5), 53 (2021).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies