Spectrophotometric determination of sodium-copper chlorophyllin level in lymphocytes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study raises the question of whether it is possible to determine the appearance of sodium-copper chlorophyllin in lymphocytes. To answer this question, the content of chlorophyllin was determined in lymphocyte lysate previously incubated in a medium containing 300 uM of copper chlorophyllin. Significant amounts of chlorophyllin were observed in the lysate, thus, suggesting that chlorophyllin is able to enter cells. However, the question remains as to whether chlorophyllin can pass through the nuclear membrane. Based on our own data and information obtained from the scientific literature, it can be concluded that the passage of chlorophyllin through the nuclear membrane happens at a much slower rate than through the plasmalemma.

Sobre autores

L. Romodin

State Scientific Center of the Russian Federation - A.I. Burnazyan Federal Medical Biophysical Center of the Federal Medical Biological Agency of Russia;Russian Biotechnological University (ROSBIOTECH)

Email: rla2904@mail.ru
Moscow, Russia

Bibliografia

  1. T. M. Ong, W. Z. Whong, J. Stewart, and H. E. Brockman, Mutation Res., 173 (2), 111 (1986). doi: 10.1016/0165-7992(86)90086-2
  2. M. Ozcan, D.Aydemir, M. Bacanli, et al., Biol. Trace Element Res., 199 (12), 4475 (2021). doi: 10.1007/s12011-021-02585-6
  3. J. P. Kamat, K. K. Boloor, and T. P. Devasagayam, Biochim. Biophys. Acta, 1487 (2-3), 113 (2000). doi: 10.1016/s1388-1981(00)00088-3
  4. А. В. Поздеев и В. П. Гугало, Вестн. Курской гос. с.-х. академии, № 2, 107 (2012).
  5. А. В. Поздеев и Н. П. Лысенко, Изв. Междунар. академии аграрного образования, 42 (2), 60 (2018).
  6. А. В. Поздеев, В. К. Промоненков и Н. П. Лысенко, Ветеринар. медицина, № 1, 42 (2010).
  7. P. Morales-Ramirez and M. T. Mendiola-Cruz, Mutation Res., 344 (1-2), 73 (1995). doi: 10.1016/0165-1218(95)90041-1
  8. P. Morales-Ramirez and M. C. Garcia-Rodriguez, Mutation Res., 320 (4), 329 (1994). doi: 10.1016/0165-1218(94)90085-x
  9. S. S. Kumar, B. Shankar, and K. B. Sainis, Biochim. Biophys. Acta 1672 (2), 100 (2004). doi: 10.1016/j.bbagen.2004.03.002
  10. S. Zimmering, O. Olvera, M. E. Hernandez, et al., Mutation Res., 245 (1), 47 (1990). doi: 10.1016/0165-7992(90)90024-e
  11. S. K. Abraham, L. Sarma, and P. C. Kesavan, Mutation Res., 322 (3), 209 (1994). doi: 10.1016/0165-1218(94)90008-6
  12. Л. А. Ромодин и М. А. Игнатов, Радиац. биология. Радиоэкология 63, (2023). DOI
  13. A. N.Osipov, N. M.Smetanina, M. V.Pustovalova, et al., Free Radic. Biol. Med., 73, 34 (2014). doi: 10.1016/j.freeradbiomed.2014.04.027
  14. I. B. Korzeneva, S. V. Kostuyk, L. S. Ershova, et al., Mutation Res., 779, 1 (2015). doi: 10.1016/j.mrfm-mm.2015.05.004
  15. P. L. Olive, J. P. Banath, and R. E. Durand, Radiation Res., 122 (1), 86 (1990).
  16. K. D. Walsh and T. A. Kato, Methods Mol. Biol. 2519, 65 (2023). doi: 10.1007/978-1-0716-2433-3_7
  17. B. B. Gomes, S. B.Barros, E. R. Andrade-Wartha, et al., J. Sci. Food Agriculture, 89, 2003 (2009). doi: 10.1002/jsfa.3681
  18. L. F. Sciuti, L. H. Z.Cocca, A. R. L. Caires, et al., Chem. Phys. Lett., 706, 652 (2018). doi: 10.1016/j.cplett.2018.07.016
  19. A. G. Favinha, D. S. Barreiro, J. N. Martins, et al., Spectrochim. Acta. Part A - Mol. Biomol. Spectroscopy, 241, 118644 (2020). doi: 10.1016/j.saa. 2020.118644
  20. К. Р. Григорян и А. А. Шиладжян, Биоорганич. химия, 43 (3), 257 (2017). DOI: 10.7868/ S0132342317020038
  21. Г. Б. Постникова и Е. А. Шеховцова, Биохимия, 83 (2), 269 (2018). doi: 10.1134/S0006297918020098
  22. Y. Yao, B. Zhang, H. Pang, et al., Food Chem., 398, 133875 (2023). doi: 10.1016/j.foodchem.2022.133875
  23. A. M. A. al. Alamein, H. M. Elwy, and S. H. S. El-Din, Spectrochim. Acta. Part A - Mol. Biomol. Spectroscopy, 206, 37 (2019). doi: 10.1016/j.saa.2018.07.073
  24. М. Б. Березин и О. И. Койфман, Рос. химич. журн., 61 (4), 42 (2017).
  25. M. Shayeghi, G. O. Latunde-Dada, J. S. Oakhill, et al., Cell, 122 (5), 789 (2005). doi: 10.1016/j.cell. 2005.06.025
  26. A. Qiu, M. Jansen, A. Sakaris, et al., Cell, 127 (5), 917 (2006). doi: 10.1016/j.cell.2006.09.041
  27. N. C. Andrews, Cell Metabolism, 5 (1), (2007). doi: 10.1016/j.cmet.2006.12.004
  28. M. Sakiyama, H. Matsuo, Y. Toyoda, et al., Human Cell, 34 (4), 1082 (2021). doi: 10.1007/s13577-021-00534-y
  29. F. Sun, Z. Zhao, M. M. Willoughby, et al., Nature, 610 (7933), 768 (2022). doi: 10.1038/s41586-022-05347-z
  30. M. Hayes and M. G. Ferruzzi, Nutrition Res., 81, 19 (2020). doi: 10.1016/j.nutres.2020.06.010
  31. U. Kutay and M. W. Hetzer, Curr. Opin. Cell Biol., 20 (6), 669 (2008). doi: 10.1016/j.ceb.2008.09.010
  32. V. Archambault, J. Li, V. Emond-Fraser, and M. Larouche, Front. Cell Devel. Biol., 10, 1012768 (2022). doi: 10.3389/fcell.2022.1012768
  33. S. Y. van der Zanden, M. L. M. Jongsma, A. C. M. Neefjes, et al., Trends Cell Biol., 33, 18 (2022). doi: 10.1016/j.tcb.2022.06.002
  34. J. Bergonie and L. Tribondeau, Comptes Rendus Hebdomadaires des Seances de l'Academie des Science. 143, 983 (1906).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies