Rotenone, Rhodamine 123 and Janus Green Induce Damage to Nuclear DNA in Ascites Tumor Cells from Mice, Rotenone and Rhodamine in X-Irradiated Cells Contribute to the Maintenance of Genome Integrity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Rotenone, Rhodamine 123, and Janus green B, inhibitors of mitochondria function, are currently investigated to create pharmacological agents that induce mitochondrial dysfunction and apoptosis. Since impaired mitochondrial function is associated with overproduction of reactive oxygen species, it seems relevant to compare DNA damage induced by the said inhibitors in Ehrlich ascites carcinoma cells and murine lymphocytic leukemia P388 and DNA damage induced by the direct effect of ionizing radiation (X-rays) that induces an increase of reactive oxygen species. The alkaline comet assay was used for measuring the level of DNA damage. The level of Rotenone-induced DNA damage was comparable to that one induced by very low-dose radiation (4 Gy) for both cell types. Post-irradiation incubation of cells led to a reduction in the level of DNA damage, indicating that damage to DNA is repaired. Treatment of Ehrlich ascites carcinoma cells with Rhodamine 123 and subsequent washing them for removal of excess dye did not cause an increase in the level of DNA damage, however, exposure to very low dose radiation (4 Gy) in the presence of Rhodamine 123 induced an increase in the level of DNA damage, which was significantly reduced after 1-hour incubation. It can be assumed that pre-treatment of cells with Rotenone or Rhodamine 123 that disrupt mitochondrial function contributed to the maintenance of the integrity of nuclear DNA in irradiated cells. Exposure to Janus green B caused an increase in the level of DNA damage and cell death. The alkaline comet assay revealed that damage induced by these compounds can be considered single- and double-strand breaks and alkali-labile (apurinic/apyrimidinic) sites in DNA.

Авторлар туралы

E. Kuznetsova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: kuzglu@rambler.ru
Pushchino, Russia

N. Sirota

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

Әдебиет тізімі

  1. Richardson J. R., Fitsanakis V., Westerink R. H. S., and Kanthasamy A. G. Neurotoxicity of pesticides. Acta Neuropathol., 138 (3), 343–362 (2019). doi: 10.1007/s00401-019-02033-9. PMID: 31197504; PMCID: PMC6826260
  2. Sun Z., Xue L., Li Y., Cui G., Sun R., Hu M., and Zhong G. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pestic. Biochem. Physiol., 173, 104801 (2021). doi: 10.1016/j.pestbp.2021.104801. PMID: 33771250
  3. Panov A., Dikalov S., Shalbuyeva N., Taylor G., Sherer T., and Greenamyre J. T. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem., 280 (51), 42026–42035 (2005). doi: 10.1074/jbc.M508628200. PMID: 16243845
  4. Li N., Ragheb K., Lawler G., Sturgis J., Rajwa B., Melendez J. A., and Robinson J. P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 278 (10), 8516–8525 (2003). doi: 10.1074/jbc.M210432200
  5. Heo G., Sun M. H., Jiang W. J., Li X. H., Lee S. H., Guo J., Zhou D., and Cui X. S. Rotenone causes mitochondrial dysfunction and prevents maturation in porcine oocytes. PLoS One, 17 (11), e0277477 (2022). doi: 10.1371/journal.pone.0277477
  6. Huang Y., Liu X., Feng Y., Nie X., Liu Q., Du X., Wu Y., Liu T., and Zhu X. Rotenone, an environmental toxin, causes abnormal methylation of the mouse brain organoid's genome and ferroptosis. Int. J. Med. Sci., 19 (7), 1184–1197 (2022). doi: 10.7150/ijms.74569. PMID: 35919817; PMCID: PMC9339416
  7. Chen H., Wen Y., Yu Z., Du X., Pan W., and Liu T. Codonopsis pilosula polysaccharide alleviates rotenoneinduced murine brain organoids death through downregulation of gene body DNA methylation modification in the ZIC4/PGM5/CAMTA1 axis. Biochem. Biophys. Rep., 37, 101593 (2023). doi: 10.1016/j.bbrep.2023.101593. PMID: 38074999; PMCID: PMC10698575
  8. Roy T., Chatterjee A., and Swarnakar S. Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. Biochim. Biophys. Acta Mol. Cell. Res., 1870 (3), 119417 (2023). doi: 10.1016/j.bbamcr.2022.119417. PMID: 36581087
  9. Pokusa M., Hajduchova D., Menichova V., Evinova A., Hatokova Z., and Kraľova-Trančikova A. Vulnerability of subcellular structures to pathogenesis induced by rotenone in SH-SY5Y cells. Physiol. Res., 70 (1), 89–99 (2021). doi: 10.33549/physiolres.934477
  10. Saravanan K. S., Sindhu K. M., and MohanaKumar K. P. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J. Pineal. Res., 42 (3), 247–253 (2007). doi: 10.1111/j.1600-079X.2006.00412.x
  11. Li X. X., He G. R, Mu X., Xu B., Tian S., Yu X., Meng F. R., Xuan Z. H., and Du G. H. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur. J. Pharmacol., 674 (2−3), 227–233 (2012). doi: 10.1016/j.ejphar.2011.09.181. PMID: 21996316
  12. Chernivec E., Cooper J., and Naylor K. Exploring the effect of rotenone–a known inducer of Parkinson’s diseaseon mitochondrial dynamics in Dictyostelium discoideum. Cells, 7 (11), 201 (2018). doi: 10.3390/cells7110201
  13. Kujawska M., Jourdes M., Kurpik M., Szulc M., Szaefer H., Chmielarz P., Kreiner G., Krajka-Kuźniak V., Mikołajczak P. Ł., Teissedre P. L., and JodynisLiebert J. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitanninsderived metabolite-urolithin A. Brain. Int. J. Mol. Sci., 21 (1), 202 (2020). doi: 10.3390/ijms21010202
  14. Radad K., Al-Shraim M., Al-Emam A., Wang F., Kranner B., Rausch W. D., and Moldzio R. Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol., 57 (4), 317–326 (2019). doi: 10.5114/fn.2019.89857. PMID: 32337944
  15. Innos J., and Hickey M. A. Using rotenone to model Parkinson's disease in mice: a review of the role of pharmacokinetics. Chem. Res. Toxicol., 34 (5), 1223–1239 (2021). doi: 10.1021/acs.chemrestox.0c00522. PMID: 33961406
  16. Guo Z., Ruan Z., Zhang D., Liu X., Hou L., and Wang Q. Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. Chemosphere, 291 (Pt 2), 132982 (2022). doi: 10.1016/j.chemosphere.2021.132982. PMID: 34822863
  17. Zhang J., Sun B., Yang J., Chen Z., Li Z., Zhang N., Li H., and Shen L. Comparison of the effect of rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on inducing chronic Parkinson’s disease in mouse models. Mol. Med. Rep., 25 (3), 91 (2022). doi: 10.3892/mmr.2022.12607. PMID: 35039876; PMCID: PMC8809117
  18. Heinz S., Freyberger A., Lawrenz B., Schladt L., Schmuck G., and Ellinger-Ziegelbauer H. Inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep., 7, 45465 (2017). doi: 10.1038/srep45465
  19. Wu M., Chen W., Zhang S., Huang S., Zhang A., Zhang Y., and Jia Z. Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis, 24 (11–12), 879–891 (2019). doi: 10.1007/s10495-019-01566-4. PMID: 31485878
  20. Callender L. A., Carroll E. C., Bober E. A., Akbar A. N., Solito E., and Henson S. M. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell., 19 (2), e13067 (2020). doi: 10.1111/acel.13067. PMID: 31788930; PMCID: PMC6996952
  21. Baracca A., Sgarbi G., Solaini G., and Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim. Biophys. Acta., 1606 (1–3), 137–146 (2003).doi: 10.1016/s0005-2728(03)00110-5. PMID: 14507434
  22. Chazotte B. Labeling mitochondria with rhodamine 123. Cold Spring Harb. Protoc., 7, 892–894 (2011). doi: 10.1101/pdb.prot5640. PMID: 21724815
  23. Johnson L. V., Walsh M. L., and Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA, 77 (2), 990–994 (1980).
  24. Bertoncello I., and Williams B. Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining. Methods Mol. Biol., 263, 181–200 (2004). doi: 10.1385/1-59259-773-4:181. PMID: 14976367
  25. Lo K. C., Brugh V. M., III, Parker M., and Lamb D. J. Isolation and Enrichment of Murine Spermatogonial Stem Cells Using Rhodamine 123 Mitochondrial Dye. Biology of Reproduction, 72 (3), 767–771 (2005). doi: 10.1095/biolreprod.104.033464
  26. McKenzie J. L., Takenaka K., Gan O. I., Doedens M., and Dick J. E. Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38- population. Blood, 109 (2), 543–545 (2007). doi: 10.1182/blood-2006-06-030270. PMID: 16990597
  27. Forster S., Thumser A. E., Hood S. R., and Plant N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One, 7 (3), e33253 (2012). doi: 10.1371/journal.pone.003325
  28. Bao X., Lu S., Liow J. S., Morse C. L., Anderson K. B., Zoghbi S. S., Innis R. B., and Pike V. W. [..C]Rhodamine-123: synthesis and biodistribution in rodents. Nucl. Med. Biol., 39 (8), 1128–1136 (2012). doi: 10.1016/j.nucmedbio.2012.06.013. PMID: 22898316; PMCID: PMC3478417
  29. Daoud R., Kast C., Gros P., and Georges E. Rhodamine 123 binds to multiple sites in the multidrug resistance protein (MRP1). Biochemistry, 39 (50), 15344–15352 (2000). doi: 10.1021/bi0020574. PMID: 11112520
  30. Jones L. W., Narayan K. S., Shapiro C. E., and Sweatman T. W. Rhodamine-123: therapy for hormone refractory prostate cancer, a phase I clinical trial. J. Chemother., 17 (4), 435–440 (2005). doi: 10.1179/joc.2005.17.4.435. PMID: 16167524
  31. Lacerda S. H., Abraham B., Stringfellow T. C., and Indig G. L. Photophysical, photochemical, and tumorselectivity properties of bromine derivatives of rhodamine-123. Photochem. Photobiol., 81 (6), 1430–1438 (2005). doi: 10.1562/2005-08-05-RA-639. PMID: 16149863
  32. Bhattarai N., Chen M., Perez R. L., Ravula S., Strongin R. M., McDonough K., and Warner I. M. Comparison of chemotherapeutic activities of rhodamine-based GUMBOS and nanoGUMBOS. Molecules, 25 (14), 3272 (2020). doi: 10.3390/molecules25143272. PMID: 32709149; PMCID: PMC7397155
  33. Biswas S., Dodwadkar N. S., Sawant R. R., Koshkaryev A., and Torchilin V. P. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J. Drug Target, 19 (7), 552–561 (2011). doi: 10.3109/1061186X.2010.536983. PMID: 21348804; PMCID: PMC3492939
  34. Lampidis T. J., Bernal S. D., Summerhayes I. C., and Chen L. B. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res., 43 (2), 716–720 (1983). PMID: 6848187
  35. Mani S., Swargiary G., and Singh K K. Natural agents targeting mitochondria in cancer. Int. J. Mol. Sci., 21 (19), 6992 (2020). doi: 10.3390/ijms21196992. PMID: 32977472; PMCID: PMC7582837
  36. Lazarow A. and Cooperstein S. J. Studies on the enzymatic basis for the janus green b staining reaction. J. Histochem. Cytochem., 1, 234 (1953). doi: 10.1177/1.4.234
  37. Smith V. A., and Johnson T. K. Identification and evaluation of a thinning agent compatible with MegaCell DCS, an animal product-free corneal storage medium. Graefes Arch. Clin. Exp. Ophthalmol., 250 (12), 1777–1786 (2012). doi: 10.1007/s00417-012-2126-1. PMID: 23011001; PMCID: PMC3501186
  38. Ahmad F., Alamoudi W., Haque S., Salahuddin M., and Alsamman K. Simple, reliable, and time-efficient colorimetric method for the assessment of mitochondrial function and toxicity. Bosn. J. Basic. Med. Sci., 18 (4), 367–374 (2018). doi: 10.17305/bjbms.2018.3323. PMID: 29984676; PMCID: PMC6252094
  39. Alamoudi W. A., Ahmad F., Acharya S., Haque S., Alsamman K., Herzallah H. K., and Al-Otaibi S. T. A simplified colorimetric method for rapid detection of cell viability and toxicity in adherent cell culture systems. J. BUON, 23 (5), 1505–1513 (2018). PMID: 30570879
  40. Daw S., and Law S. Quercetin induces autophagy in myelodysplastic bone marrow including hematopoietic stem/progenitor compartment. Environ. Toxicol., 36 (2), 149–167 (2021). doi: 10.1002/tox.23020. PMID: 32902906
  41. Huang C. Z., Li Y. F., Huang X. H., and Li M. Interactions of Janus Green B with double stranded DNA and the determination of DNA based on the measurement of enhanced resonance light scattering. Analyst., 125 (7), 1267–1272 (2000). doi: 10.1039/b001662o. PMID: 10984922
  42. Lee B. C., Yoo J. S., Baik K. Y., Kim K. W., and Soh K. S. Novel threadlike structures (Bonghan ducts) inside lymphatic vessels of rabbits visualized with a Janus Green B staining method. Anat. Rec. B. New. Anat., 286 (1), 1–7 (2005). doi: 10.1002/ar.b.20076. PMID: 16177995
  43. Yang J., Ma L., Zhang Y., Fang F., and Li L. Flow cytometric identification of two different rhodamine123-stained mitochondrial populations in maize leaves. Protoplasma, 231 (3–4), 249–252 (2007). doi: 10.1007/s00709-007-0259-6. PMID: 17922268
  44. Zheng Y., Li H., Manole C. G., Sun A., Ge J., and Wang X. Telocytes in trachea and lungs. J. Cell. Mol. Med., 15 (10), 2262–2268 (2011). doi: 10.1111/j.1582-4934.2011.01404.x. PMID: 21810171; PMCID: PMC4394233
  45. Lee B. C. Evidence for novel tubular-bundle structures entangled in the fascia of the inner abdominal wall of a rat. Micron, 123, 102681 (2019). doi: 10.1016/j.micron.2019.102681. PMID: 31121482.
  46. Gozar M. M., O'Sullivan W. J., and Bagnara A. S. Mitochondrial function in Babesia bovis. Int. J. Parasitol., 22 (2), 165–171 (1992). doi: 10.1016/0020-7519(92)90097-5. PMID: 1587679
  47. Vennerstrom J. L., Makler M. T., Angerhofer C. K., and Williams J. A. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines. Antimicrob. Agents Chemother., 39 (12), 2671–2677 (1995). doi: 10.1128/AAC.39.12.2671. PMID: 8593000; PMCID: PMC163010
  48. Menon T. and Ponnuvel K. M. Disc diffusion test in the identification of Candida species. Mycoses, 43 (5), 165–168 (2000). doi: 10.1046/j.1439-0507.2000.00566.x. PMID: 10948812
  49. Summerhayes I. C., Lampidis T. J., Bernal S. D., Nadakavukaren J. J., Nadakavukaren K. K., ShepherdE. L., and Chen L. B. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Natl. Acad. Sci. USA, 79 (17), 5292–5296 (1982). doi: 10.1073/pnas.79.17.5292. PMID: 6752944; PMCID: PMC346882
  50. Gupta R. S., and Dudani A. K. Species-specific differences in the toxicity of rhodamine 123 towards cultured mammalian cells. J. Cell Physiol., 130 (3), 321–327 (1987). doi: 10.1002/jcp.1041300303. PMID: 3558490
  51. Ghazi-Khansari M., Mohammadi-Bardbori A., and Hosseini M. J. Using Janus green B to study paraquat toxicity in rat liver mitochondria: role of ACE inhibitors (thiol and nonthiol ACEi). Ann. N. Y. Acad. Sci., 1090, 98–107 (2006). doi: 10.1196/annals.1378.010. PMID: 17384251
  52. Azzam E. I., Jay-Gerin J. P., and Pain D. Ionizing radiationinduced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 327 (1–2), 48–60 (2012). doi: 10.1016/j.canlet.2011.12.012. PMID: 22182453
  53. Kumari S., Badana A. K., G M. M., G S., and Malla R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights, 13, 1177271918755391 (2018). doi: 10.1177/1177271918755391. PMID: 29449774; PMCID: PMC5808965
  54. Kobashigawa S., Suzuki K., and Yamashita S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblastlike cells. Biochem. Biophys. Res. Commun., 414 (4), 795–800 (2011).
  55. Collins A. R., Oscoz A. A., Brunborg G., Gaivao I., Giovannelli L., Kruszewski M., Smith C. C., and Stetina R. The comet assay: topical issues. Mutagenesis, 23 (3), 143–151 (2008). doi: 10.1093/mutage/gem051. PMID: 18283046
  56. Кондратьева И. А., Воробьева Н. В., Буракова О. В., Фрезе К. В., Егорова С. К., МойсеновичМ. М., Киркин А. Ф., Пинегин Б. В., Симонова А. В., Киташов А. В., и Рокк Ф. Практикум по иммунологии, под ред. И. А. Кондратьевой и В. Д. Самуилова (Изд-во МГУ, М., 2001).
  57. Chemeris N. K., Gapeyev A. B., Sirota N. P., Gudkova O. Y., Kornienko N. V., Tankanag A. V., Konovalov I. V., Buzoverya M. E., Suvorov V. G., and Logunov V. A. DNA damage in frog erythrocytes after in vitro exposure to a high peak-power pulsed electromagnetic field. Mutat. Res., 558 (1–2), 27–34 (2004).
  58. Lovell D. P., and Omori T. Statistical issues in the use of the comet assay. Mutagenesis, 23 (3), 171–182 (2008).
  59. Swarnkar S., Singh S., Goswami P., Mathur R., Patro I. K., and Nath C. Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem. Res., 37 (10), 2178–2189 (2012). doi: 10.1007/s11064-012-0841-y. PMID: 22846965
  60. Трещалина Е. М. Коллекция опухолевых штаммов животных для экспериментальной химиотерапии злокачественных опухолей (Практическая медицина, М., 2022).
  61. Лысенко Ю. А., Косых И. А., Шабанов Д. И., Вирютина В. В., Артюхов В. Г. Жизнеспособность клеток асцитной карциномы Эрлиха на различных стадиях роста опухоли в условиях фотодинамического воздействия. Вестн. ВГУ, сер.: Химия. Биология. Фармация, 2, 120–125 (2013).
  62. Darzynkiewicz F., Traganos L., Staiano-Coico J., and Kapuscinski M. R. Melamed interactions of rhodamine 123 with living cells studied by flow cytometry. Cancer Res., 42, 799–806 (1982). PMID: 7059978
  63. Zorova L. D., Demchenko E. A., Korshunova G. A., Tashlitsky V. N., Zorov S. D., Andrianova N. V., Popkov V. A., Babenko V. A., Pevzner I. B., Silachev D. N., Plotnikov E. Y., and Zorov D. B. Is the Mitochondrial Membrane Potential (ΔΨ) Correctly assessed? Intracellular and intramitochondrial modifications of the ΔΨ probe, rhodamine 123. Int. J. Mol. Sci., 23 (1), 482 (2022). doi: 10.3390/ijms23010482. PMID: 35008907; PMCID: PMC8745654
  64. Urata M. Janus Green B causing functional disturbances in mitochondria in Mg2+-containing medium. Cell structure and function, 2, 29−39 (1977).
  65. Khan A. Y., Saha B., and Kumar G. S. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies. Spectrochim. Acta A. Mol. Biomol. Spectrosc., 131, 615–624 (2014). doi: 10.1016/j.saa.2014.04.087. PMID: 24861262
  66. Olive P., and Banath J. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc., 1, 23–29 (2006). doi: 10.1038/nprot.2006.5

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>