Acclimation of Primary Photosynthetic Reactions in the Cells of Chlamydomonas reinhardtii to Cadmium: Analysis of Cell Population Heterogeneity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The mechanisms of acclimation of primary photosynthetic reactions in the green microalgae Chlamydomonas reinhardtii to the toxic action of cadmium were investigated by analyzing the dynamics of distribution of key photosynthetic parameters in cell population. A synchronous culture of microalgae was incubated for 96 h in the presence of 25 μM Cd, and OJIP-transient curves of individual cells were recorded at different stages of incubation with the toxicant using an original microfluorometer. The analysis of OJIP-transient curves made it possible to determine distributions of key JIP-test parameters: FV/FM, ETO/ABS, RC/ABS, which represent photochemical activity of PS II, electron transport in PS II, and light absorption per active reaction center in PS II, respectively. Acclimation of primary photosynthetic reactions in microalgae to cadmium was accompanied by the appearance of two dominating cell fractions, which demonstrated the stable values of photosynthetic parameters when energy imbalance occurred due to the presence of the toxicant. The cells related to the first fraction retained moderate PS II activity by the effect of reduced PS II antenna size, while the cells of the second fraction showed low photochemical activity of PS II keeping antenna size similar to those of control cells.

Авторлар туралы

А. Volgusheva

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

I. Konyukhov

Department of Biology, Lomonosov Moscow State University

Moscow, Russia

T. Antal

Pskov State University

Email: taras_an@mail.ru
Laboratory of Integrated Environmental Research Pskov, Russia

Әдебиет тізімі

  1. Магданова Л. А. и Голясная Н. В. Гетерогенность как адаптивное свойство бактериальной популяции. Микробиология, 82 (1), 3–13 (2013). doi: 10.7868/S0026365613010072
  2. Wang X. and Wang W. X. Cell cycle-dependent Cu uptake explained the heterogenous responses of Chlamydomonas to Cu exposure. Environ. Pollut., 319, 121013 (2023). doi: 10.1016/j.envpol.2023.121013
  3. Altschuler S. J. and Wu L. F. Cellular heterogeneity: do differences make a difference? Cell, 141 (4), 559–563 (2010). doi: 10.1016/j.cell.2010.04.033
  4. Damodaran S. P., Eberhard S., Boitard L., Rodriguez J. G., Wang Y., Bremond N., Baudry J., Bibette J., and Wollman F. A. A millifluidic study of celltocell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii. PLoS One, 10 (3), e0118987 (2015). doi: 10.1371/journal.pone.0118987
  5. Yan P., Guo J. S., Zhang P., Xiao Y., Li Z., Zhang S. Q., Zhang Y. X., and He S. X. The role of morphological changes in algae adaptation to nutrient stress at the singlecell level. Sci. Total Environ., 754, 142076 (2021). doi: 10.1016/j.scitotenv.2020.142076
  6. Volgusheva A. A., Todorenko D. A., Konyukhov I. V., Voronova E. N., Pogosyan S. I., Plyusnina T. Y., Khruschev S. S., and Antal T. K. Acclimation Response of Green Microalgae Chlorella Sorokiniana to 2,3',4,4',6-Pentachlorobiphenyl. Photochem. Photobiol., 99 (4), 1106–1114. (2023). doi: 10.1111/php.13771
  7. Schansker G., Toth S. Z., Kovacs L., Holzwarth A. R., Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim. Biophy.s Acta, 1807 (9), 1032–43 (2011). doi: 10.1016/j.bbabio.2011.05.022
  8. Vredenberg W. J., Bulychev A. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry, 60 (1–2), 87–95 (2003). doi: 10.1016/s1567-5394(03)00053-7
  9. Stirbet A. and Govindjee. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth. Res., 113 (1–3), 15–61 (2012). doi: 10.1007/s11120-012-9754-5
  10. Sipka G. B., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J. R., Lambrev P. H., and Garab G. Light-adapted chargeseparated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell, 33 (4), 1286–1302 (2021). doi: 10.1093/plcell/koab008
  11. Strasser R. J., Tsimilli-Michael M., and Srivastava A. In Chlorophyll fluorescence: a signature of photosynthesis, Eds. by G. C. Papageorgiou and Govindjee (Springer, Dordrecht, 2004), p. 321. doi: 10.1007/978-1-40203218-9_12
  12. Lazar D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol., 33 (1), 9‒30 (2006). doi: 10.1071/FP05095
  13. Todorenko D., Volgusheva A., Timofeev N., Kovalenko I., Matorin D., and Antal T. Multiple in vivo Effects of cadmium on photosynthetic electron transport in pea plants. Photochem. Photobiol., 97 (6), 1516‒1526 (2021). doi: 10.1111/php.13469
  14. Volgusheva A., Todorenko D., Baizhumanov A., Chivkunova O., Solovchenko A., and Antal T. Cadmiumand chromium-induced damage and acclimation mechanisms in Scenedesmus quadricauda and Chlorella sorokiniana. J. Appl. Phycol., 34, 1435–1446 (2022). doi: 10.1007/s10811-022-02747-6
  15. Kuznetsov A. G., Konyukhov I. V., Pogosyan S. I., and Rubin A. B. Microfluorimeter for studying the state of photosynthetic apparatus of individual cells of microalgae Oceanology, 61 (6), 1055–1063 (2021). doi: 10.1134/S0001437021060278
  16. Погосян С. И., Сивченко М. А. и Максимов В. Н. Физиологическая гетерогенность популяции микроводорослей. Классификация цинобиев Scenedesmus quadricauda по типам кривых индукции флуоресценции хлорофилла. Изв. РАН. Сер. биол., 3, 337‒373 (1996).
  17. Voronova E. N., Il’ash L.V., Pogosyan S. I., Ulanova A. Yu., Matorin D. N., Man-gi Cho, and Rubin A. B. Intrapopulation heterogeneity of the fluorescence parameters of the marine plankton alga Thalassiosira weissflogii at various nitrogen levels. Microbiology, 78, 419–427 (2009). doi: 10.1134/S0026261709040043
  18. Волгушева А. А., Конюхов И. В. и Антал Т. К. Оценка первичных реакций фотосинтеза в индивидуальных клетках микроводорослей микрофлуориметрическим методом. Вестн. МГУ. Сер. 16. Биология, 78 (3), 170-177 (2023). doi: 10.55959/MSU0137-0952-16-78-3-4
  19. Harris E. H. The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Ed. By E. H. Harris (Academic Press, San Diego, 1989). doi: 10.1126/science.246.4936.1503-a
  20. Маторин Д. Н., Осипов В. А., Яковлева О. В. и Погосян С. И. Определение состояния растений и водорослей по флуоресценции хлорофилла (МАКС Пресс, Москва, 2010)
  21. Маторин Д. Н. и Рубин А. Б. Флуоресценции хлорофилла высших растений и водорослей (Ижевский иститут комьютерных исследований, ИжевскМосква, 2012).
  22. Маторин Д. Н. и Горячев С. Н. Флуоресценция хлорофилла микроводорослей в биотестировании загрязнений (Альтекс, Москва, 2017).
  23. Thiriet-Rupert S., Gain G., Jadoul A., Vigneron A., Bosman B., Carnol M., Motte P., Cardol P., Nouet C., and Hanikenne M. Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas. Plant Physiol., 187 (3), 1653‒1678 (2021). doi: 10.1093/plphys/kiab375

© Russian Academy of Sciences, 2004

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>