Interaction of magnesium ions with semiquinone radicals of tiron used as an indicator of reactive oxygen species

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Electron paramagnetic resonance spectroscopy (EPR) and quantum chemical calculations based on density functional theory were used to demonstrate that the earlier observed changes in the EPR spectra of Tiron semiquinone radical dissolved in sea water solution occur due to interaction of Mg2+ ions with Tiron radical. This interaction is caused by electrostatic attraction between Mg2+ ions and Tiron radicals, which bears great charges of opposite sign (+2 and -3), on the one hand, and due to the ability of Mg2+ ion to bind to bidentate oxygen-containing ligands efficiently, on the other hand. The formation of tight contact ion pairs leads to electron and spin density redistribution in the Tiron radical, as can been seen by the observed changes in the EPR spectra of the radical.

Авторлар туралы

L. Ustynuyk

Lomonosov Moscow State University

Email: leila_ust@mail.ru
Moscow, Russia

V. Medvedeva

Lomonosov Moscow State University;E.I. Chazov National Medical Research Center for Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

S. Liubimovskii

A.M. Prokhorov General Physics Institute, Russian Academy of Sciences

Moscow, Russia

E. Ruuge

Lomonosov Moscow State University;E.I. Chazov National Medical Research Center for Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

A. Tikhonov

Lomonosov Moscow State University

Email: an_tikhonov@mail.ru
Moscow, Russia

Әдебиет тізімі

  1. B.Commoner, J. Townsend, and G. E. Pake, Nature, 174 (4432), 689 (1954).
  2. D. Harman, Proc. Natl. Acad. Sci. USA, 78 (11), 7124 (1981).
  3. A. N. Ledenev, A. A. Konstantinov, E. Popova, and E. K.Ruuge, Biochem.Int., 13 (2), 391 (1986).
  4. M. A. Hemminga, Chem. Phys. Lipids, 32 (3-4), 323 (1983).
  5. M. Otto, J. Stach, R. Kirmse, and G. Werner, Talanta, 28 (5), 345 (1981).
  6. F. A. Taiwo, Spectroscopy, 22 (6), 491 (2008).
  7. R. W. Miller and F. D. H. Macdowall, Biochim. Biophys. Acta, 387, 176 (1975).
  8. И. В. Григолава, М. Ю. Ксензенко, A. A. Константинов и др., Биохимия, 45 (1), 75 (1980).
  9. О. В. Коркина и Э. К. Рууге, Биофизика, 45 (4), 695 (2000).
  10. A. L. Dudylina, M. V. Ivanova, K. B. Shumaev, and E. K.Ruuge, Cell Biochem. Biophys., 77, 99 (2019).
  11. A. V. Peskin, Yu. A. Labas, and A. N. Tikhonov, FEBS Lett., 434 (1-2), 201 (1998).
  12. S. O. Liubimovskii, L.Yu. Ustynyuk, and A.N. Tikhonov, J. Mol. Liq., 333, 115810 (2021).
  13. D. N. Laikov, Chem. Phys. Lett., 281 (1-3), 151 (1997).
  14. Д. Н. Лайков, Дисс.. канд. физ.-мат. наук (МГУ имени М.В. Ломоносова, М., 2000).
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77 (18), 3865 (1996).
  16. L. N. Ikryannikova, L. Yu. Ustynyuk, and A. N. Tikhonov, J. Phys. Chem. A, 108 (21), 4759 (2004).
  17. L. N. Ikryannikova, L. Yu. Ustynyuk, and A. N. Tikhonov, Magn. Reson. Chem., 48 (5), 337 (2010).
  18. Дж. Вертц и Дж. Болтон, Теория и практические приложения метода ЭПР (Мир, М., 1975).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>