Study of the Effect of Photobiomodulation on the Human Intestinal Microbiota in vitro During Normal and Post-Cryopreservation
- Authors: Khramov R.N1, Zalomova L.V2, Fesenko (Jr.) E.E2
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Institute of Cell Biophysics, Russian Academy of Sciences
- Issue: Vol 70, No 6 (2025)
- Pages: 1230-1239
- Section: Medical biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/354285
- DOI: https://doi.org/10.31857/S0006302925060207
- ID: 354285
Cite item
Abstract
About the authors
R. N Khramov
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
L. V Zalomova
Institute of Cell Biophysics, Russian Academy of Sciences
Email: zalonova.91@mail.ru
Pushchino, Russia
E. E Fesenko (Jr.)
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
References
- Tremaroli V. and Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 489 (7415), 242–249 (2012). doi: 10.1038/nature11552
- Шендеров Б. А. Микробная экология человека и ее роль в поддержании здоровья Метаморфозы, 5, 72–80 (2014).
- Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N., Anokhin A. P., Heath A. C., Warner B., Reeder J., Kuczynski J., Caporaso J. G., Lozupone C. A., Lauber C., Clemente J., Knights D., Knight R., and Gordon J. I. Human gut microbiome viewed across age and geography. Nature, 486 (7402), 222–227 (2012). doi: 10.1038/nature11053
- Jahani-Sherafat S., Taghavi H., Asri N., Tavirani M. R., Razzaghi Z., and Rostami-Nejad M. R. The effectiveness of photobiomodulation therapy in modulation the gut microbiome dysbiosis related diseases. Gastroenterol. Hepatol. Bed Bench, 16 (4), 386–393 (2023). doi: 10.22037/ghfbb.v16i4.2687
- Дирин В. Н., Наумов С. А., Удут В. В., Вовк С. М. И Гольдберг В. Е. Способ коррекции функционального состояния органов иммунной системы и биологический электростимулятор внутренних органов для его осуществления. Патент РФ № 2145892 от 26.10.1998.
- Phypers R., Berisha-Muharremi V., and Hanna R. The efficacy of multiwavelength red and near-infrared transdermal photobiomodulation light therapy in enhancing female fertility outcomes and improving reproductive health: a prospective case series with 9-month follow-up. J. Clin. Med., 13 (23) 7101 (2024). doi: 10.3390/jcm13237101
- Bicknell B., Laakso E. L., Liebert A., and Kiat H. Modifying the microbiome as a potential mechanism of photobiomodulation: a case Report. Photobiomodul. Photomed. Laser Surg., 40 (2), 88–97 (2022). doi: 10.1089/photob.2021.0057
- Чичерин И. Ю., Погорельский И. П., Лундовских И.А., Шабалина М. Р. и Дармов И. В. Трансплантация кишечной микробиоты. Журн. инфектологии, 5 (2), 82–89 (2013).
- Храмов Р. Н., Заломова Л. В. и Фесенко Е. Е. (мл.). Фотобиомодуляция микробиоты кишечника человека in vitro с помощью красного и ближнего инфракрасного светодиодного излучения. В сб. материалов конференции ≪Теоретическая и экспериментальная биофизика≫ (Синхробук, Пущино, 2023), сс. 108–110.
- Zalomova L. V. and Fesenko E. E. (Jr.). FBS-based cryoprotective compositions for effective cryopreservation of gut microbiota and key intestinal microorganisms. BMC Research Notes, 17 (1), 168 (2024). doi: 10.1186/s13104-024-06836-2
- De Freitas L. F. and Hamblin M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top Quantum Electron, 22 (3), 7000417 (2016). doi: 10.1109/JSTQE.2016.2561201
- Dompe C., Moncrieff L., Matys J., Grzech-Lesniak K., Kocherova I., Bryja A., Bruska M., Dominiak M., Skiba P. M., Shibli J. A., Volponi A. A., and DyszkiewiczKonwinska B. Photobiomodulation-underlying mechanism and clinical applications. J. Clin. Med., 9 (6), 1724 (2020). doi: 10.3390/jcm9061724
- Amaroli A., Ravera S., Zekiy A., Benedicenti S., and Pasquale C. A narrative review on oral and periodontal bacteria microbiota photobiomodulation, through visible and near-infrared light: from the origins to modern therapies. Int. J. Mol. Sci., 23 (3), 1372 (2022). doi: 10.3390/ijms23031372
- Bordea I. R., Hanna R., Chiniforush N., Gradinaru E., Campian R. S., Sirbu A., Amaroli A., and Benedicenti S. Evaluation of the outcome of various laser therapy applications in root canal disinfection: A systematic review. Photodiagn. Photodyn. Ther., 29:101611 (2020). doi: 10.1016/j.pdpdt.2019.101611
- Chung H., Dai T., Sharma S. K., Huang Y.-Y., Caroll J.D., and Hamblin M. R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng., 40 (2), 516–533 (2012). doi: 10.1007/s10439-011-0454-7
- van Veen R. L., Sterenborg H. J., Pifferi A., Torricelli A., Chikodze E., and Cubeddu R. Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt., 10 (5), 054004 (2005). doi: 10.1117/1.2085149
- Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol., 3, 371–394 (1949).
- Salvy P. and Hatzimanikatis V. Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Proc. Natl. Acad. Sci USA, 118 (8), e2013836118 (2021). doi: 10.1073/pnas.2013836118
- Tuchina E. S., Tuchin V. V., Altshuler G. B., and Yaroslavsky I. V. Photodynamic Influence of Red (625 nm) and Infra-Red (805 nm) Radiation on Bacteria P. Acnes Processed by Photosensitizes. Izvestiya of Saratov University. Physics, 8 (1), 21–26 (2008). doi: 10.18500/1817-3020-2008-8-1-21-26
- Karu T. I. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B: Biology, 49 (1), 1–17 (1999). doi: 10.1016/S1011-1344(98)00219-X
- Karu T. I., Kalendo G. S., Letokhov V. S., and LobkoV. V. Effect of pulse laser UV-radiation on proliferating and resting HeLa tumor cells. Nuovo Cimento, 24 (2): 273-6 (1984).
- Karu T. I., Tiphlova O., Esenaliev R. O., and Letokhov V. Two different mechanisms of low-intensity laser photobiological effects on Escherichia coli. J. Photochem. Photobiol., 24 (3), 155–161 (1994). doi: 10.1016/1011-1344(94)07016-4
- Mardanov A. V., Babykin M. M., Beletsky A. V., Grigiriev A. I., Zinchenko V. V., Kadnikov V. V., Kirpichnikov M. P., Mazur A. M., Nedoluzhko A. V., Novikova N. D., Prokhortchouk E. B., Ravin N. V., Skryabin K. G., and Shestakov S. V. Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the MARS-500 experiment, simulating long term space flight. Acta Naturae, 5 (3), 116–125 (2013).
- Bicknell B., Liebert A., Johnstone D., and Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med. Sci., 34 (2), 317–327 (2019). doi: 10.1007/s10103-018-2594-6
- Upadhyay P., Banstola A., Bhayana B., and Wu M. X., Photobiomodulation strengthens muscles via its dual functions in gut microbiota. Adv. Sci., e11582 (2025). doi: 10.1002/advs.202511582
- Chen Y.-M., Weil L., Chiu Y.-S., Hsu Y.-J., Tsai T.-Y., Wang M.-F., and Huang C.-C. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients, 8 (4), 205 (2016). doi: 10.3390/nu8040205
- Huang W. C., Hsu Y. J., Li H., Kan N.W., Chen Y.-M., Lin J.-S., Hsu T.-K., Tsai T.-Y., Chiu Y.-S., and Huang C.-C. Effect of Lactobacillus Plantarum TWK10 on improving endurance performance in humans. Chin. J. Physiol., 61 (3), 163–170 (2018). doi: 10.4077/CJP.2018.BAH587
Supplementary files


