Comparative Study of Antioxidant Activity of 4-H Pyran Acids Using Optical Methods and Quantum-Chemical Calculations
- Authors: Kozin S.V1,2, Lyasota O.M1,2, Kravtsov A.A1,2, Kozlova E.A1, Rubailo A.D1, Moiseev A.V3, Popov K.A4, Bespalov A.V1, Gordeev K.V3
-
Affiliations:
- Kuban State University
- Southern Research Center, Russian Academy of Sciences
- Kuban State Medical University
- Kuban State Agrarian University
- Issue: Vol 70, No 6 (2025)
- Pages: 1052-1067
- Section: Molecular biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/354267
- DOI: https://doi.org/10.31857/S0006302925060029
- ID: 354267
Cite item
Abstract
About the authors
S. V Kozin
Kuban State University; Southern Research Center, Russian Academy of Sciences
Email: kozinsv85@mail.ru
Krasnodar, Russia; Rostov-on-Don, Russia
O. M Lyasota
Kuban State University; Southern Research Center, Russian Academy of SciencesKrasnodar, Russia; Rostov-on-Don, Russia
A. A Kravtsov
Kuban State University; Southern Research Center, Russian Academy of SciencesKrasnodar, Russia; Rostov-on-Don, Russia
E. A Kozlova
Kuban State UniversityKrasnodar, Russia
A. D Rubailo
Kuban State UniversityKrasnodar, Russia
A. V Moiseev
Kuban State Medical UniversityKrasnodar, Russia
K. A Popov
Kuban State Agrarian UniversityKrasnodar, Russia
A. V Bespalov
Kuban State UniversityKrasnodar, Russia
K. V Gordeev
Kuban State Medical UniversityKrasnodar, Russia
References
- Reddy V. P. Oxidative stress in health and disease. Biomedicines, 11 (11), 2925 (2023). doi: 10.3390/biomedicines11112925
- Yoshikawa T. and You F. Oxidative stress and bio-regulation. Int. J. Mol. Sci., 25 (6), 3360 (2024). doi: 10.3390/ijms25063360
- Никитина О. А., Даренская М. А., Семёнова Н. В., и Колесникова Л. И. Система антиоксидантной защиты: регуляция метаболических процессов, генетические детерминанты, методы определения. Cибирский науч. мед. журн., 42 (3), 4–17 (2022). doi: 10.18699/SSMJ20220301
- Mendonça J. D. S., Guimarães R. C. A., Zorgetto-Pinheiro V. A., Fernandes C. D. P., Marcelino G., Bogo D., Freitas K. C., Hiane P. A., de Pádua Melo E. S., Vilela M. L. B., and Nascimento V. A. D. Natural antioxidant evaluation: A review of detection methods. Molecules, 27 (11), 3563 (2022). doi: 10.3390/molecules27113563
- Stoia M. and Oancea S. Low-molecular-weight synthetic antioxidants: Classification, pharmacological profile, effectiveness and trends. Antioxidants (Basel), 11 (4), 638 (2022). doi: 10.3390/antiox11040638
- Forman H. J. and Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 20 (9), 689–709 (2021). doi: 10.1038/s41573-021-00233-1. Erratum in: Nat. Rev. Drug Discov., 20 (8), 652 (2021). doi: 10.1038/s41573-021-00267-5
- Yan Q., Liu S., Sun Y., Chen C., Yang S., Lin M., Long J., Yao J., Lin Y., Yi F., Meng L., Tan Y., Ai Q., Chen N., and Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med., 21 (1), 519 (2023). doi: 10.1186/s12967-023-04361-7
- Chen Y., Li X., Wang S., Miao R., and Zhong J. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases. Nutrients, 15 (3), 591 (2023). doi: 10.3390/nu15030591
- Rojas-Solé C., Pinilla-González V., Lillo-Moya J., González-Fernández T., Saso L., and Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep., 29 (1), 2289740 (2024). doi: 10.1080/13510002.2023.2289740
- Zilles J. C., Dos Santos F. L., Kulkamp-Guerreiro I. C., and Contri R. V. Biological activities and safety data of kojic acid and its derivatives: A review. Exp. Dermatol., 31 (10), 1500–1521 (2022). doi: 10.1111/exd.14662
- Li H., Du X., Chen C., Qi J., and Wang Y. Integrating transcriptomics and metabolomics analysis on kojic acid combating Acinetobacter baumannii biofilm and its potential roles. Microbiol. Res., 254, 126911 (2022). doi: 10.1016/j.micres.2021.126911
- Li T. X., Liang J. X., Liu L. L., Shi F. C., Jia X. W., Li M. H., and Xu C. P. Novel kojic acid derivatives with anti-inflammatory effects from Aspergillus versicolor. Fitoterapia, 154, 105027 (2021). doi: 10.1016/J.FITOTE.2021.105027
- Suthiram K. T., Ghazi T., Abdul N. S. and Chutungoon A. A. Kojic acid induces oxidative stress and anti-inflammatory effects in human hepatocellular carcinoma (HepG2) cells. Toxicon, 232, 107221 (2023). doi: 10.1016/j.toxicon.2023.107221
- Wang K., Liu C., Di C. J., Ma C., Han C. G., Yuan M. R., Li P. F., Li L. and Liu Y. X. Kojic acid protects C57BL/6 mice from gamma-irradiation induced damage. Asian Pac. J. Cancer Prev., 15 (1), 291–297 (2014). doi: 10.7314/apjcp.2014.15.1.291
- Wang K., Li P. F., Han C. G., Du L., Liu C., Hu M., Lian S. J. and Liu Y. X. Protective effects of kojic acid on the periphery blood and survival of beagle dogs after exposure to a lethal dose of gamma radiation. Radiat. Res., 182 (6), 666–673 (2014). doi: 10.1667/RR13823.1
- Hosseinimehr S. J., Emami S., Zakaryaee V., Ahmadi A., and Moslemi D. Radioprotective effects of kojic acid against mortality induced by gamma irradiation in mice. Saudi Med. J., 30 (4), 490–493 (2009).
- Wei X., Luo D., Yan Y., Yu H., Sun L., Wang C., Song F., Ge H., Qian H., Li X., Tang X., and Liu P. Kojic acid inhibits senescence of human corneal endothelial cells via NF-κB and p21 signaling pathways. Exp. Eye Res., 180, 174–183 (2019). doi: 10.1016/j.exer.2018.12.020
- Khan A., Park T. J., Ikram M., Ahmad S., Ahmad R., Jo M. G., and Kim M. O. Antioxidative and anti-inflammatory effects of kojic acid in Aβ-induced mouse model of Alzheimer's disease. Mol Neurobiol., 58 (10), 5127–5140 (2021). doi: 10.1007/s12035-021-02460-4
- Singh D. K., Gulati K., and Ray A. Effects of chelidonic acid, a secondary plant metabolite, on mast cell degranulation and adaptive immunity in rats. Int Immunopharmacol., 40, 229–234 (2016). doi: 10.1016/j.intimp.2016.08.009
- Oh H. A., Kim H. M., and Jeong H. J. Beneficial effects of chelidonic acid on a model of allergic rhinitis. Int. Immunopharmacol., 11 (1), 39 (2011). doi: 10.1016/j.intimp.2010.10.002
- Avdeeva E., Porokhova E., Khlusov I., Rybalova T., Shults E., Litvinova L., Shupletsova V., Khaziakhmatova O., Sukhodolo I., and Belousov M. Calcium chelidonate: Semi-synthesis, crystallography, and osteoinductive activity in vitro and in vivo. Pharmaceuticals (Basel), 14 (6), 579 (2021). doi: 10.3390/ph14060579
- Porter T. G. and Martin D. L. Chelidonic acid and other conformationally restricted substrate analogues as inhibitors of rat brain glutamate decarboxylase. Biochem. Pharmacol., 34 (23), 4145–4150 (1985). doi: 10.1016/0006-2952(85)90207-2
- Jeong H. J., Yang S. Y., Kim H. Y., Kim N. R., Jang J. B., and Kim H. M. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test. Exp Biol Med (Maywood), 241 (14), 1559–1567 (2016). doi: 10.1177/1535370216642044
- Козин С. В., Кравцов А. А., Киндоп В. К., Беспалов А. В., Иващенко Л. И., Назаренко М. А., Моисеев А. В., Чураков А. В. и Вашурин А. С. Синтез и физико-химические свойства солей магния с 4нпириновыми кислотами. Журн. неорг. химии, 70 (2), 191–200 (2025). doi: 10.31857/S0044457X25020065
- Шурыгин А. Я. Препарат Бализ-2. 2-е изд. (Кубан. гос. ун-т, Краснодар, 2001).
- Kozin S., Kravtsov A., Ivashchenko L., Dotsenko V., Dzhimak S., Aksenov N., Vashurin A., Ivlev V., Baryshev M., Bespalov A., Fedulova L., Dorohova A., and Anashkina A., Structure and neuroprotector properties of a complex compound of lithium with comenic acid. Int. J. Mol. Sci., 25 (1), 286 (2024). doi: 10.3390/ijms25010286
- Kozin S., Kravtsov A., Ivashchenko L., Dotsenko V., Vasilyeva L., Vasilyev A., Tekutskaya E., Aksenov N., Baryshev M., Dorohova A., Fedulova L., and Dzhimak S. Study of the magnesium comenate structure, its neuroprotective and stress-protective activity. Int. J. Mol. Sci., 24 (9), 8046 (2023). doi: 10.3390/ijms24098046
- Rogachevskii I. V., Plakhova V. B., Penniyaynen V. A., Terekhin S. G., Podzorova S. A., and Krylov B. V. New approaches to the design of analgesic medicinal substances. Can. J. Physiol. Pharmacol., 100 (1), 43 (2022). doi: 10.1139/cjpp-2021-0286
- Shurygina L. V., Zlishcheva E. I., and Kravtsov A. A. Neurotrophic action of comenic acid and its derivatives potassium comenate and calcium comenate. Bull. Exp. Biol. Med., 165 (4), 465–469 (2018). doi: 10.1007/s10517-018-4195-6
- Shurygina L. V., Zlishcheva E. I., Khablyuk V. V., Kravtsova A. N., Abramova N. O., Zlishcheva L. I., and Kravtsov A. A. Comparative analysis of antioxidant properties of comenic acid and potassium comenate in modeled immobilization stress. Bull. Exp. Biol. Med., 159 (4), 466–468 (2015). doi: 10.1007/s10517-015-2993-7
- Shurygina L. V., Zlishcheva E. I., Kravtsova A. N., and Kravtsov A. A. Antioxidant and antiamnestic effects of potassium comenate and comenic acid under conditions of normobaric hypoxia with hypercapnia. Bull. Exp. Biol. Med., 163 (3), 344–348 (2017). doi: 10.1007/s10517-017-3800-4
- Kondratenko R. V., Chepkova A. N., Shurygin A. Y., and Skrebitskii V. G. Comenic acid prevents post-stress enhancement of long-term potentiation in rat hippocampus. Bull. Exp. Biol. Med., 136 (5), 464–466 (2003). doi: 10.1023/b:bebm.0000017094.267116c
- Kozin S. V., Ivashchenko L. I., Kravtsov A. A., Vasilyeva L. V., Vasiliev A. M., Bukov N. N., Dorohova A. A., Lyasota O. M., Bespalov A. V., and Dzhimak S. S. Meconic acid is a possible neuroprotector: justification based on in vitro experiments and its physicochemical properties. Biophysics, 68 (1), 13–23 (2023). doi: 10.1134/S006350923010098
- Günzel P., Forster L., Schollmayer C., and Holzgrabe U. A convenient preparation of carboxy-γ-pyrone derivatives: Meconic acid and comenic acid. Org. Prepar. Procedures Int., 50 (5), 512–516 (2018). doi: 10.1080/00304948.2018.1525990
- Козин С. В., Кравцов А. А., Кравченко С. В. и Иващенко Л. И. Антиоксидантный и анксиолитический эффекты Вуабмасейна амфоязыки и Гасюбайка ас-идорійна в условиях нормобарической гипоксии с гиперкапцией. Вопросы питомца, 90 (2), 63–72 (2021). doi: 10.33029/0042-8833-2021-90-2-63-72
- Козин С. В., Кравцов А. А., Кравченко С. В. и Иващенко Л. И. Цитопротективный и антиоксидантный эффект мехоновой кислоты в модельных системах. Бог. эксперимент. биологии и медицины, 171 (5), 592–595 (2021). doi: 10.47056/0365-9615-2021-171-5-592-595
- Giordano A., Morales-Tapia P., Moncada-Basualto M., Pozo-Martínez J., Olea-Azar C., Nesic A., and Cabrera-Barjas G. Polyphenolic composition and antioxidant activity (ORAC, EPR and Cellular) of different extracts of Argyllia radiate vitroplants and natural roots. Molecules, 27 (3), 610 (2022). doi: 10.3390/molecules27030610
- Ramlagan P., Rondeau P., Planesse C., Neergheer-Bhujun V., Bourdon E., and Bahorun T. Comparative suppressing effects of black and green teas on the formation of advanced glycation end products (AGEs) and AGE-induced oxidative stress. Food Funct., 8 (11), 4194–4209 (2017). doi: 10.1039/c7f601038a
- Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med., 26 (9–10), 1231–1237 (1999). doi: 10.1016/s0891-5849(98)00315-3
- Babenkova I. V., Osipov A. N., and Teselkin Y. O. The effect of dihydroquercetin on catalytic activity of iron (II) ions in the fenton reaction. Bull. Exp. Biol. Med., 165 (3), 347–350 (2018). doi: 10.1007/s10517-018-4167-x
- Neese F. The ORCA program system. WIREs Comput. Mol. Sci., 2 (1), 73–78 (2012). doi: 10.1002/WCMS.81
- Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38 (6), 3098–3100 (1988). doi: 10.1103/physreva.38.3098
- Grimme S., Ehrlich S., and Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456–1465 (2011). doi: 10.1002/jcc.21759
- Weigend F. and Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 7, 3297–3305 (2005). doi: 10.1039/b508541a
- Tomasi J., Mennucci B., and Cammi R. Quantum mechanical continuum solvation models. Chem. Rev., 105, 2999–3094 (2005). doi: 10.1021/cr9904009
- Khan P., Idrees D., Moxley M. A., Corbett J. A., Ahmad F., von Figura G., Sly W. S., Waheed A., and Hassan M. I. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl. Biochem. Biotechnol., 173 (2), 333–355 (2014). doi: 10.1007/s12010-014-0850-1
- Sun R., Casali L., Turner R. J., Braga D. and Grepioni F. Exploring the co-crystallization of kojic acid with silver(I), copper(II), zinc(II), and gallium(III) for potential antibacterial applications. Molecules, 28 (3), 1244 (2023). doi: 10.3390/molecules28031244
- Kandioller W., Kurzwernhart A., Hanif M., Meier S. M., Henke H., Keppler B. K. and Hartinger C. G. Pyrene derivatives and metals: From natural products to metal-based drugs. J. Organometallic Chem., 696 (5), 999–1010 (2011). doi: 10.1016/j.jorganchem.2010.11.010
- Yasodha V., Govindarajan S., Low J. N. and Gildewell C. Cationic, neutral and anionic metal(II) complexes derived from 4-oxo-4H-pyran-2,6-dicarboxylic acid (cheliotonic acid). Acta Crystallogr. C., 63 (5), 207–215 (2007). doi: 10.1107/S010827010701459X
- Munteanu I. G. and Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci., 22 (7), 3380 (2021). doi: 10.3390/ijms22073380
- Timoshnikov V. A., Selyutina O. Y., Polyakov N. E., Didichenko V., and Kontoghiorghes G. J. Mechanistic insights of chelator complexes with essential transition metals: Antioxidant/Pro-oxidant activity and applications in medicine. Int. J. Mol. Sci., 23 (3), 1247 (2022). doi: 10.3390/ijms23031247
- Fujimoto T. and Gotoh H. Feature selection for the interpretation of antioxidant mechanisms in plant phenolics. Molecules, 28 (3), 1454 (2023). doi: 10.3390/molecules28031454
- Volynkin V. A., Pachuev A. V., Pirogova A. N., Panyushkin V. T., and Shurygin A. Ya. An NMR study of comenic acid and its salts with Li+ and Na+ in aqueous solution and solid state. J. Struct. Chem., 52 (5), 892–896 (2011). doi: 10.1134/S0022476611050076
- Miyamoto S. and Brochmann-Hanssen E. Dissociation constants of certain gamma-pyrone dicarboxylic acids. Meconic acid and cheliotonic acid. J. Pharm. Sci., 51, 552–554 (1962). doi: 10.1002/jps.2600510613
Supplementary files


