Influence of Smoking on the State of the Thiol-Disulphide System in Blood Plasma and the Frequency of TCR-Mutant Lymphocytes in Healthy Individuals and Cancer Patients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative study of indicators of somatic mutagenesis and the thiol-disulfide system in the peripheral blood of cancer patients before treatment and healthy individuals with different smoking status (n = 95) was carried out. All studied parameters including the content of reduced (GSH), oxidized (GSSG) glutathione and their ratio (GSH/GSSG), the frequency of lymphocytes with mutations at T-cell receptor (TCR) locus were found to be significantly increased by 1.5–2.7 times in the general group of patients as compared to those in the general group of healthy individuals (p < 0.01 in all cases). After smoking cessation, a decrease in the frequency of mutant cells and the ratio of reduced and oxidized glutathione was observed in patients (p < 0.05). At the individual level, strong correlations were found between the frequency of TCR-mutant cells and the content of GSH and GSSG only in the subgroup of smoking patients with a high level of mutagenesis. Thus, the correlation coefficient between the frequency of TCR-mutant lymphocytes and the GSH content in this subgroup was 0.82 (p < 0.001), for GSSG – r = 0.68 (p < 0.01). The results obtained indicate the contribution of the thiol disulfide system to the formation of a high frequency of gene mutations in a part of smokers with cancer.

About the authors

G. F Ivanenko

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: galiv03@rambler.ru
Moscow, Russia

I. A Zamulaeva

A. Tsyb Medical Radiological Research Center–Branch of the National Medical Research Center of Radiology of the Ministry of Health of Russia; Joint Institute for Nuclear Research

Obninsk, Russia; Dubna, Russia

References

  1. Solak I., Cetinkaya C. D., Gederet Y. T., Kozanhan B., Erel O., and Eryilmaz M. A. Effects of smoking on thiol/disulfide homeostasis. Eur. Rev. Med. Pharmacol. Sci., 22 (8), 2477–2482 (2017). doi: 10.26355/eurrev_201804_14842
  2. Sies H. and Jones D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol., 21 (7), 363 (2020). doi: 10.1038/s41580-020-0230-3
  3. Chauhan P., Reddy S. S., Chokkanna V. K., Singh P., and Majumdar K. Oxidant and antioxidant status among tobacco users: A cross-sectional study. Natl. J. Maxillofac. Surg., 14 (3), 444 (2023). doi: 10.4103/njms.njms_517_21
  4. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med., 4, 105–113 (2011). doi: 10.2147/IJGM.S15618
  5. Domenicotti C. and Marengo B. Paradox role of oxidative stress in cancer: State of the art. Antioxidants (Basel), 11 (5), 1027 (2022). doi: 10.3390/antiox11051027
  6. Lambring C. B., Chen L., Nelson C., Stevens A., Bratcher W., and Basha R. Oxidative stress and cancer: Harnessing the therapeutic potential of curcumin and analogues against cancer. Eur. J. Biol., 82 (2), 317 (2023). doi: 10.26650/eurjbiol.2023.1348427
  7. Shadfar S., Parakh S., Jamali M. S., and Atkin J. D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener., 12 (1), 18 (2023), doi: 10.1186/s40035-023-00350-4
  8. Roos E., Heikkinen S., Seppa K., Pietilainen O., Ryynanen H., Laaksonen M., Roos T., Knekt P., Mannisto S., Harkanen T., Jousilahti P., Koskinen S., Eriksson J. G., Malila N., Rahkonen O., and Pitkaniemi J. Pairwise association of key lifestyle factors and risk of solid cancers −A prospective pooled multi-cohort register study. Prev. Med. Rep., 38 (10), 2607 (2024), doi: 10.1016/j.pmedr.2024.102607
  9. Hafızoğlu M., Eren F., Neşelioğlu S., Şahiner Z., Karaduman D., Atbaş C., Dikmeer A., İleri İ., Balcı C., Doğu B. B., Cankurtaran M., Erel O., and Halil M. G. Physical frailty is related to oxidative stress through thiol/disulfide homeostasis parameters. Eur. Geriatr. Med., 15 (2), 423 (2024). doi: 10.1007/s41999-023-00911-w
  10. Korkmaz Ş. A., Kaymak S. U., Neşelioğlu S., and Erel O. Thiol-disulphide homeostasis in patients with schizophrenia: The potential biomarkers of oxidative stress in acute exacerbation of schizophrenia. Clin. Psychopharmacol. Neurosci., 22 (1), 139 (2024). doi: 10.9758/cpn.23.1084
  11. Desideri E., Ciccarone F., and Ciriolo M. R. Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients, 11, 1926 (2019). doi: 10.3390/nu11081926
  12. Nitti M., Marengo B., Furfaro A. L., Pronzato M. A., Marinari U. M., Domenicotti C., and Traverso N. Hormesis and oxidative distress: Pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants (Basel), 11 (8), 1613 (2022). doi: 10.3390/antiox11081613
  13. Halliwell B. Reactive Species and Antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141 (2), 312–322 (2006). doi: 10.1104/pp.106.077073
  14. Musaogullari A. and Yuh-Cherng Ch. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 21, 8113 (2020). doi: 10.3390/ijms21218113
  15. Lu S. C. Glutathione synthesis. Biochim. Biophys. Acta, 1830, 3143 (2013). doi: 10.1016/j.bbagen.2012.09.008
  16. Vivancos P. D., Wolff T., Markovic J., Pollardo F. V., and Foyer C. H. A nuclear glutathione cycle within the cell cycle. Biochem J., 431, 169 (2010). DOI.org/10.1042/BJ20100409
  17. Corso C. R. and Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic targe. Crit. Rev. Oncol. Hematol., 128, 43 (2018).
  18. Liguori I., Russo G., Curcio F., Bulli G., Aran L., DellaMorte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., and Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 13, 757 (2018).
  19. Buşu C., Li W., Caldito G., and Yee T. An inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol., 1 (1), 131–139 (2013). doi: 10.1016/j.redox.2013.01.003
  20. Yamashita R., Komaki Y., Yang G., and Ibuki Y. Cell linedependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 858-860, 503273 (2020). doi: 10.1016/j.mrgentox.2020.503273
  21. Emre S., Demirseren D. D., Alisik M., Aktas A., Neselioglu S., and Erel O. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis. Cutan. Ocul. Toxicol., 36 (4), 393 (2017). doi: 10.1080/15569527.2017.1311339
  22. Erel O. and Erdoğan S. Thiol-disulfide homeostasis: an integrated approach with biochemical and clinical aspects. Turk. J. Med. Sci., 50 (10), Article 17 (2020). doi: 10.3906/sag-2003-64
  23. Calaf G. M., Urzua U., Termini L., and Aguayo F. Oxidative stress in female cancers. Oncotarget, 9 (34), 23824–23842 (2018). doi: 10.18632/oncotarget.25323
  24. Kalinina E. V., Gavriliuk L. A., and Pokrovsky V. S. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry (Moscow), 87 (5), 413 (2022). doi: 10.1134/S0006297922050030
  25. Kyoizumi S., Akiyama M., Hirai Y., Kusunoki Y., Tanabe K., and Umeki S. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells. J. Exp. Med., 171 (6), 1981 (1990).
  26. Замулаева И. А., Саенко А. С., Орлова Н. В. и Смирнова С. Г. Патент на изобретение ≪Способ определения частоты мутантных по Т-клеточному рецептору лимфоцитов периферической крови человека≫ №2316766 (Россия), приоритет от 30 мая 2006 г., зарегистрирован 10 февраля 2008 г.
  27. McNeil T. L. and Beck L. Y. Fluorometric estimation of GSH-OPT. Anal. Biochem., 22, 431 (1968).
  28. Ivanenko G. F. and Burlakova E. B. Relationships between a thiol-disulfide system and liposoluble antioxidants with cytogenetic indices in humans exposed to low doses radiation. Engineering, 5 (10B), 62–67 (2013). doi: 10.4236/eng.2013.510B013
  29. Орлова Н. В., Иваненко Г. Ф., Смирнова С. Г., Максютов М. А. и Замулаева И. А. Частота TCR-мутантных лимфоцитов и состояние тиолдисульфидной системы у работников атомной промышленности. Радиация и риск, 29 (1), 57 (2020). doi: 10.21870/0131-3878-2020-29-1-57-67
  30. Kennedy L., Sandhu J. K., Harper M. E., and Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 10 (10), 1429 (2020). doi: 10.3390/biom10101429
  31. Marengo B., Nitti M., Furfaro A. L., Colla R., Ciucis C. D., Marinari U. M., Pronzato M. A., Traverso N., and Domenicotti C. Redox Homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid. Med. Cell Longev., 623, 5641 (2016). doi: 10.1155/2016/6235641
  32. Kirtonia A., Sethi G., and Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 77 (22), 4459 (2020). doi: 10.1007/s00018-020-03536-5
  33. Borrego S., Vazquez A., Dasi F., Cerda C., Iradi A., Tormos C., Sanche J. M., Bagan L., Boix J., Zaragoza C., Camps J., and Saez G. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int. J. Mol. Sci., 14 (2), 3467 (2013). doi: 10.3390/ijms14023467
  34. Замулаева И. А., Смирнова С. Г., Орлова Н. В., Богатырева Т. И., Павлов В. В., Терехова А. Ю., Макаренко С. А. и Саенко А. С. Анализ частоты TCR-мутантных лимфоцитов у онкологических больных до и после химиолучевого лечения. Радиация и риск, 20 (1), 8 (2011).
  35. Замулаева И. А. Закономерности соматического мутагенеза на генном уровне после радиационного воздействия в дозах до 200 мЗв на организм человека. Вкн. Избранные лекции, под ред. А.Д. Каприна и С.А. Иванова (МРНЦ им. А.Ф. Цыба, Обнинск, 2022), сс. 199–203.
  36. Иванов В. К., Кащеев В. В., Замулаева И. А., Саенко А. С., Чекин С. Ю., Максютов М. А., Туманов К. А., Смирнова С. Г. и Орлова Н. В. Патент на изобретение ≪Способ формирования группы радиологического риска≫ № 2492480 (Россия), приоритет от 05 июля 2012 г., зарегистрировано 10 сентября 2013 г.
  37. Bonassi S., Norppa H., Ceppi M., Stromberg U., Vermeulen R., Znaor A., Cebulska-Wasilewska A., Fabianova E., Fucic A., Gundy S., Hansteen I. L., Knudsen L. E., Lazutka J., Rossner P., Sram R. J., and Boffetta P. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22358 subjects in 11 countries. Carcinogenesis, 29 (6), 1178 (2008). doi: 10.1093/carcin/bgn075
  38. Cole J. and Scopek T. R. International commission for protection against environmental mutagens and carcinogens. Working paper no. 3. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat. Res., 304 (1), 33 (1994). doi: 10.1016/0027-5107(94)90320-4
  39. DeМarini D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: A review. Mutat. Res., 567 (2–3), 447 (2004). doi: 10.1016/j.mrrev.2004.02.001
  40. Al-Obaide M. A. I., Ibrahim B. A., Al-Humaish S., and Abdel-Salam A. G. Genomic and bioinformatics approaches for analysis of genes associated with cancer risks following exposure to tobacco smoking. Front. Publ. Health, 6, 84 (2018). doi: 10.3389/fpubh.2018.00084
  41. Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front. Immunol., 14, 1063716 (2023). doi: 10.3389/fimmu.2023.1063716
  42. Курбанов И. С., Алиев Д. И. и Ванин А. Ф. Содержание окиси азота в табачном дыме. Журн. физ. химии, 62 (4), 1123 (1988).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».