Influence of Smoking on the State of the Thiol-Disulphide System in Blood Plasma and the Frequency of TCR-Mutant Lymphocytes in Healthy Individuals and Cancer Patients
- Authors: Ivanenko G.F1, Zamulaeva I.A2,3
-
Affiliations:
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- A. Tsyb Medical Radiological Research Center–Branch of the National Medical Research Center of Radiology of the Ministry of Health of Russia
- Joint Institute for Nuclear Research
- Issue: Vol 70, No 2 (2025)
- Pages: 404-416
- Section: Medical biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/292992
- DOI: https://doi.org/10.31857/S0006302925020198
- EDN: https://elibrary.ru/KYITWQ
- ID: 292992
Cite item
Abstract
About the authors
G. F Ivanenko
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: galiv03@rambler.ru
Moscow, Russia
I. A Zamulaeva
A. Tsyb Medical Radiological Research Center–Branch of the National Medical Research Center of Radiology of the Ministry of Health of Russia; Joint Institute for Nuclear ResearchObninsk, Russia; Dubna, Russia
References
- Solak I., Cetinkaya C. D., Gederet Y. T., Kozanhan B., Erel O., and Eryilmaz M. A. Effects of smoking on thiol/disulfide homeostasis. Eur. Rev. Med. Pharmacol. Sci., 22 (8), 2477–2482 (2017). doi: 10.26355/eurrev_201804_14842
- Sies H. and Jones D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol., 21 (7), 363 (2020). doi: 10.1038/s41580-020-0230-3
- Chauhan P., Reddy S. S., Chokkanna V. K., Singh P., and Majumdar K. Oxidant and antioxidant status among tobacco users: A cross-sectional study. Natl. J. Maxillofac. Surg., 14 (3), 444 (2023). doi: 10.4103/njms.njms_517_21
- Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med., 4, 105–113 (2011). doi: 10.2147/IJGM.S15618
- Domenicotti C. and Marengo B. Paradox role of oxidative stress in cancer: State of the art. Antioxidants (Basel), 11 (5), 1027 (2022). doi: 10.3390/antiox11051027
- Lambring C. B., Chen L., Nelson C., Stevens A., Bratcher W., and Basha R. Oxidative stress and cancer: Harnessing the therapeutic potential of curcumin and analogues against cancer. Eur. J. Biol., 82 (2), 317 (2023). doi: 10.26650/eurjbiol.2023.1348427
- Shadfar S., Parakh S., Jamali M. S., and Atkin J. D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener., 12 (1), 18 (2023), doi: 10.1186/s40035-023-00350-4
- Roos E., Heikkinen S., Seppa K., Pietilainen O., Ryynanen H., Laaksonen M., Roos T., Knekt P., Mannisto S., Harkanen T., Jousilahti P., Koskinen S., Eriksson J. G., Malila N., Rahkonen O., and Pitkaniemi J. Pairwise association of key lifestyle factors and risk of solid cancers −A prospective pooled multi-cohort register study. Prev. Med. Rep., 38 (10), 2607 (2024), doi: 10.1016/j.pmedr.2024.102607
- Hafızoğlu M., Eren F., Neşelioğlu S., Şahiner Z., Karaduman D., Atbaş C., Dikmeer A., İleri İ., Balcı C., Doğu B. B., Cankurtaran M., Erel O., and Halil M. G. Physical frailty is related to oxidative stress through thiol/disulfide homeostasis parameters. Eur. Geriatr. Med., 15 (2), 423 (2024). doi: 10.1007/s41999-023-00911-w
- Korkmaz Ş. A., Kaymak S. U., Neşelioğlu S., and Erel O. Thiol-disulphide homeostasis in patients with schizophrenia: The potential biomarkers of oxidative stress in acute exacerbation of schizophrenia. Clin. Psychopharmacol. Neurosci., 22 (1), 139 (2024). doi: 10.9758/cpn.23.1084
- Desideri E., Ciccarone F., and Ciriolo M. R. Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients, 11, 1926 (2019). doi: 10.3390/nu11081926
- Nitti M., Marengo B., Furfaro A. L., Pronzato M. A., Marinari U. M., Domenicotti C., and Traverso N. Hormesis and oxidative distress: Pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants (Basel), 11 (8), 1613 (2022). doi: 10.3390/antiox11081613
- Halliwell B. Reactive Species and Antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141 (2), 312–322 (2006). doi: 10.1104/pp.106.077073
- Musaogullari A. and Yuh-Cherng Ch. Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease. Int. J. Mol. Sci., 21, 8113 (2020). doi: 10.3390/ijms21218113
- Lu S. C. Glutathione synthesis. Biochim. Biophys. Acta, 1830, 3143 (2013). doi: 10.1016/j.bbagen.2012.09.008
- Vivancos P. D., Wolff T., Markovic J., Pollardo F. V., and Foyer C. H. A nuclear glutathione cycle within the cell cycle. Biochem J., 431, 169 (2010). DOI.org/10.1042/BJ20100409
- Corso C. R. and Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic targe. Crit. Rev. Oncol. Hematol., 128, 43 (2018).
- Liguori I., Russo G., Curcio F., Bulli G., Aran L., DellaMorte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., and Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 13, 757 (2018).
- Buşu C., Li W., Caldito G., and Yee T. An inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol., 1 (1), 131–139 (2013). doi: 10.1016/j.redox.2013.01.003
- Yamashita R., Komaki Y., Yang G., and Ibuki Y. Cell linedependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 858-860, 503273 (2020). doi: 10.1016/j.mrgentox.2020.503273
- Emre S., Demirseren D. D., Alisik M., Aktas A., Neselioglu S., and Erel O. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis. Cutan. Ocul. Toxicol., 36 (4), 393 (2017). doi: 10.1080/15569527.2017.1311339
- Erel O. and Erdoğan S. Thiol-disulfide homeostasis: an integrated approach with biochemical and clinical aspects. Turk. J. Med. Sci., 50 (10), Article 17 (2020). doi: 10.3906/sag-2003-64
- Calaf G. M., Urzua U., Termini L., and Aguayo F. Oxidative stress in female cancers. Oncotarget, 9 (34), 23824–23842 (2018). doi: 10.18632/oncotarget.25323
- Kalinina E. V., Gavriliuk L. A., and Pokrovsky V. S. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry (Moscow), 87 (5), 413 (2022). doi: 10.1134/S0006297922050030
- Kyoizumi S., Akiyama M., Hirai Y., Kusunoki Y., Tanabe K., and Umeki S. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells. J. Exp. Med., 171 (6), 1981 (1990).
- Замулаева И. А., Саенко А. С., Орлова Н. В. и Смирнова С. Г. Патент на изобретение ≪Способ определения частоты мутантных по Т-клеточному рецептору лимфоцитов периферической крови человека≫ №2316766 (Россия), приоритет от 30 мая 2006 г., зарегистрирован 10 февраля 2008 г.
- McNeil T. L. and Beck L. Y. Fluorometric estimation of GSH-OPT. Anal. Biochem., 22, 431 (1968).
- Ivanenko G. F. and Burlakova E. B. Relationships between a thiol-disulfide system and liposoluble antioxidants with cytogenetic indices in humans exposed to low doses radiation. Engineering, 5 (10B), 62–67 (2013). doi: 10.4236/eng.2013.510B013
- Орлова Н. В., Иваненко Г. Ф., Смирнова С. Г., Максютов М. А. и Замулаева И. А. Частота TCR-мутантных лимфоцитов и состояние тиолдисульфидной системы у работников атомной промышленности. Радиация и риск, 29 (1), 57 (2020). doi: 10.21870/0131-3878-2020-29-1-57-67
- Kennedy L., Sandhu J. K., Harper M. E., and Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 10 (10), 1429 (2020). doi: 10.3390/biom10101429
- Marengo B., Nitti M., Furfaro A. L., Colla R., Ciucis C. D., Marinari U. M., Pronzato M. A., Traverso N., and Domenicotti C. Redox Homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid. Med. Cell Longev., 623, 5641 (2016). doi: 10.1155/2016/6235641
- Kirtonia A., Sethi G., and Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 77 (22), 4459 (2020). doi: 10.1007/s00018-020-03536-5
- Borrego S., Vazquez A., Dasi F., Cerda C., Iradi A., Tormos C., Sanche J. M., Bagan L., Boix J., Zaragoza C., Camps J., and Saez G. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int. J. Mol. Sci., 14 (2), 3467 (2013). doi: 10.3390/ijms14023467
- Замулаева И. А., Смирнова С. Г., Орлова Н. В., Богатырева Т. И., Павлов В. В., Терехова А. Ю., Макаренко С. А. и Саенко А. С. Анализ частоты TCR-мутантных лимфоцитов у онкологических больных до и после химиолучевого лечения. Радиация и риск, 20 (1), 8 (2011).
- Замулаева И. А. Закономерности соматического мутагенеза на генном уровне после радиационного воздействия в дозах до 200 мЗв на организм человека. Вкн. Избранные лекции, под ред. А.Д. Каприна и С.А. Иванова (МРНЦ им. А.Ф. Цыба, Обнинск, 2022), сс. 199–203.
- Иванов В. К., Кащеев В. В., Замулаева И. А., Саенко А. С., Чекин С. Ю., Максютов М. А., Туманов К. А., Смирнова С. Г. и Орлова Н. В. Патент на изобретение ≪Способ формирования группы радиологического риска≫ № 2492480 (Россия), приоритет от 05 июля 2012 г., зарегистрировано 10 сентября 2013 г.
- Bonassi S., Norppa H., Ceppi M., Stromberg U., Vermeulen R., Znaor A., Cebulska-Wasilewska A., Fabianova E., Fucic A., Gundy S., Hansteen I. L., Knudsen L. E., Lazutka J., Rossner P., Sram R. J., and Boffetta P. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22358 subjects in 11 countries. Carcinogenesis, 29 (6), 1178 (2008). doi: 10.1093/carcin/bgn075
- Cole J. and Scopek T. R. International commission for protection against environmental mutagens and carcinogens. Working paper no. 3. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat. Res., 304 (1), 33 (1994). doi: 10.1016/0027-5107(94)90320-4
- DeМarini D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: A review. Mutat. Res., 567 (2–3), 447 (2004). doi: 10.1016/j.mrrev.2004.02.001
- Al-Obaide M. A. I., Ibrahim B. A., Al-Humaish S., and Abdel-Salam A. G. Genomic and bioinformatics approaches for analysis of genes associated with cancer risks following exposure to tobacco smoking. Front. Publ. Health, 6, 84 (2018). doi: 10.3389/fpubh.2018.00084
- Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front. Immunol., 14, 1063716 (2023). doi: 10.3389/fimmu.2023.1063716
- Курбанов И. С., Алиев Д. И. и Ванин А. Ф. Содержание окиси азота в табачном дыме. Журн. физ. химии, 62 (4), 1123 (1988).
Supplementary files
